

ALINTA ENERGY REEVES PLAINS POWER STATION

DEVELOPMENT APPLICATION

12 OCTOBER 2017

APPENDIX F – AIR QUALITY IMPACT ASSESSMENT

This document has been prepared on behalf of Arcadis Australia Pacific Pty Ltd by:

Northstar Air Quality Pty Ltd,

Level 40, 100 Miller Street, North Sydney, NSW 2060

www.northstarairquality.com | Tel: +61 (02) 9931 7870

Reeves Plains Power Station Project, Air Quality Impact Assessment

Addressee(s): Arcadis Australia Pacific Pty Ltd

Report Reference: 17.1052.FR1V1

Date: 13 September 2017

Disclaimer

This report has been prepared with the due care and attention of a suitably qualified consultant. Information is obtained from sources believed to be reliable, but is in no way guaranteed. No guarantee of any kind is implied or possible where predictions of future conditions are attempted. This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the addressee(s) and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report.

Quality Control

Study	Status	Prepared by	Checked by	Authorised by
INTRODUCTION	Final	Northstar Air Quality	MD, EH, SW	GCG, MD
THE PROJECT	Final	Northstar Air Quality	MD, EH, SW	GCG, MD
EXISTING CONDITIONS	Final	Northstar Air Quality	MD, EH, SW	GCG, MD
METHODOLOGY	Final	Northstar Air Quality	MD, EH, SW	GCG, MD
CONSTRUCTION PHASE RISK ASSESSMENT	Final	Northstar Air Quality	MD, EH, SW	GCG, MD
OPERATIONAL PHASE IMPACT ASSESSMENT	Final	Northstar Air Quality	MD, EH, SW	GCG, MD
DISCUSSION	Final	Northstar Air Quality	MD, EH, SW	GCG, MD

Report Status

Northstar References	5	Report Status	Report Reference	Version
Year	Job Number	(Draft: Final)	(R <i>x</i>)	(V <i>x</i>)
17	1052	F	R1	V1
Based upon the above	17.1052.FR1V1			

Final Authority

This report must by regarded as draft until the above study components have been each marked as final, and the document has been signed and dated below.

G. Graham

13 September 2017

Non-Technical Summary

Arcadis Australia Pacific Pty Ltd, on behalf of Alinta Energy (Reeves Plains) Pty Ltd, has engaged Northstar Air Quality Pty Ltd to perform an impact assessment study of the potential impacts upon air quality of the construction and operation of the Reeves Plains Power Station Project (the Project).

The power station will be located at 1629 Redbanks Road on a 41 hectare greenfield site located in Reeves Plains, approximately 12 kilometres south-east of Mallala and 50 kilometre north of Adelaide (the Project site).

The purpose of this Air Quality Impact Assessment is to assess the impact of the construction and operation of the Project upon air quality, determine compliance (or otherwise) with the South Australia *Environmental Protection (Air Quality) Policy* (2016) and make recommendations for changes to operations where the studies show that there is an unacceptable risk to the environment.

The Project involves the construction and operation of a series of six (6) 50-megawatt dual-fuel gas turbines to generate peak-demand electricity for export to the electricity grid and each turbine will discharge exhaust gases to atmosphere via a dedicated 3.5 metre diameter emission stack at a discharge height of 15.5 metres above ground level. The proposed power station can be operated at various reduced load profiles, and emissions of air pollutants have been shown to vary according to the operating load. The Project is capable of operating on either natural gas or mineral diesel as fuel. The Project is to operate the power station on natural gas with an option to operate on mineral diesel in case of interruption of the gas supply and this AQIA considers the potential impacts of the operation of the power station operating on both fuels.

The Air Quality Impact Assessment presents an assessment of potential impacts during the construction and operation of the Project. The construction phase assessment uses a risk-based methodology adapted from the Institute of Air Quality Management (2014) *IAQM Guidance on the Assessment of Dust from Demolition and Construction.* Using this methodology, it is concluded that construction dust emissions may be adequately controlled through the application of a range of suitable construction management practices, and that these should be documented within a Construction Environmental Management Plan (CEMP).

The potential impacts from the operation of the Project have been assessed using a referenced dispersion modelling study, using meteorological data as specified by the Environmental Protection Authority, representative background monitoring data and using emission rates derived directly from Alinta Energy (Reeves Plains) Pty Ltd. Based upon the assumptions presented in the Air Quality Impact Assessment it is predicted that the operation of the power station on either gas or mineral diesel will not result in a breach of the standards prescribed in the South Australia *Environmental Protection (Air Quality) Policy* (2016).

It is recommended that a suitable campaign of compliance monitoring should be implemented to the satisfaction of the Environmental Protection Authority. It is considered that the demonstration that the engines are capable of being operated as set out in this Air Quality Impact Assessment is of critical importance, and that a program of emissions testing with the engines operating on gas and diesel and at various loads should be implemented as a condition of approval.

Whilst the Air Quality Impact Assessment predicts that the air quality risks associated with operation at full capacity (300 megawatts) are within acceptable limits, it is considered that the environmental risks are further managed by the proposed staged development. Implementing the recommended program of compliance emissions monitoring during the initial stage (150 megawatts installed capacity) would provide the Environmental Protection Authority with increased assurance that the proposed plant is able to achieve its performance objectives prior to operating the second stage (300 megawatt installed capacity).

In light of the above, and in consideration of the proposed verification studies, it is considered to be reasonable to conclude that the proposed construction and operation of the Project should not be refused on grounds of air quality.

Contents

1.	INTRODUCTION	
1.1.	Approach	
1.2.	Objective of the Study	
1.3.	Ambient Air Quality Standards	12
2.	THE PROJECT	13
2.1.	Environmental Setting	13
2.2.	Overview	
2.3.	Potential for Emissions to Air	15
2.3.1.	Construction	15
2.3.2.	Operation	15
3.	EXISTING CONDITIONS	17
3.1.	Topography	17
3.2.	Surrounding Land Sensitivity	
3.2.1.	Discrete Receptor Locations	
3.2.2.	Uniform Receptor Locations	22
3.3.	Air Quality	22
3.3.1.	Source of Data for Background Gaseous Pollutants	23
3.3.2.	Source of Data for Background Particulates	24
3.3.3.	Application of Background Data	
3.4.	Meteorology	25
4.	METHODOLOGY	
4.1.	Construction Phase Risk Assessment	
4.2.	Operational Phase Impact Assessment	
4.2.1.	Emissions Estimation (Gas)	
4.2.2.	Emissions Estimation (Diesel)	
4.2.3.	Start-Up Emissions	
4.2.4.	Dispersion Modelling	
4.2.5.	Meteorological Processing	

4.2.6.	Short-Term Impacts	
4.2.7.	Particle Size Fractions	
4.2.8.	NO_X to NO_2 Reactions	
5.	CONSTRUCTION PHASE RISK ASSESSMENT	
5.1.	Impact Magnitude	43
5.2.	Sensitivity of an Area	44
5.2.1.	Land Use Value	
5.2.2.	Sensitivity of an Area	
5.3.	Risk (Pre-Mitigation)	
5.4.	Identified Mitigation	45
5.5.	Risk (Post-Mitigation)	
6.	OPERATIONAL PHASE IMPACT ASSESSMENT	51
6.1.	Predicted Incremental Operational Impacts	51
6.1.1.	Operating on Gas	51
6.1.2.	Operating on Diesel	
6.2.	Predicted Cumulative Operational Impacts	53
6.2.1.	Operating on Gas	53
6.2.2.	Operating on Diesel	54
6.3.	Predicted Start-Up Impacts	55
7.	DISCUSSION	
7.1.	Construction Phase Air Quality Impacts	
7.2.	Operational Phase Air Quality Impacts	
7.2.1.	Operating on Gas	
7.2.2.	Operating on Diesel	60
7.2.3.	Start Up Emissions	61
7.3.	Conclusions	61
8.	REFERENCES	63

Appendices

- Appendix A Meteorology
- Appendix B Background Air Quality
- Appendix C Emissions Estimation
- Appendix D Construction Dust Assessment Methodology
- Appendix E Dispersion Modelling Results
- Appendix F Technical Specifications
- Appendix G Practitioner Capability Statement

Tables

Table 1	Air EPP ambient air standards	12
Table 2	Discrete sensitive receptor locations used in the study	19
Table 3	Summary of assumed background concentrations	25
Table 4	Details of meteorological monitoring surrounding the power station	25
Table 5	Turbine locations	31
Table 6	Emissions per engine operating on gas	32
Table 7	Emissions per engine operating on diesel	33
Table 8	Factor weighted emissions profiles for start-up and shut-down (U1 and U2)	36
Table 9	Meteorological Parameters used for this Study	37
Table 10	Construction phase impact screening criteria distances	41
Table 11	Application of step 1 screening	43
Table 12	Construction phase impact categorisation of dust emission magnitude	43
Table 13	Risk of air quality impacts from construction activities	44
Table 14	Site-specific management measures	45
Table 15	Predicted maximum incremental GLC (all receptors) – gas	51
Table 16	Predicted maximum incremental GLC (all receptors) – diesel	52
Table 17	Predicted maximum cumulative impacts – gas	53
Table 18	Predicted maximum incremental impacts – diesel	54
Table 19	Predicted maximum start-up impacts (all receptors) – gas and diesel	55
Table 20	Summary of impacts (gas) and comparison against Air EPP	59
Table 21	Summary of impacts (diesel) and comparison against Air EPP	60

Figures

Figure 1	Project location and surrounds	13
Figure 2	Topography surrounding the project site (3-D projection)	17
Figure 3	Topography surrounding the project site (2-D projection)	18
Figure 4	Discrete receptor locations used in the AQIA (close view)	21
Figure 5	Discrete receptor locations used in the AQIA (wide view)	21
Figure 6	Sources of air quality and meteorological data used in the study	23
Figure 7	Annual wind roses 2012 to 2016, Edinburgh RAAF AWS	26
Figure 8	Long-term wind rose (2012 to 2016), Edinburgh RAAF AWS	27
Figure 9	Construction phase risk assessment methodology	30
Figure 10	LM6000 Sprint® start up cycle	34
Figure 11	1-minute average emissions measured during start-up at Bairnsdale Power	Station
	(engine U1 top) (engine U2 bottom)	35
Figure 12	Predicted wind speed and direction – Project site 2009	38

Units Used in the Report

All units presented in the report follow the International System of Units (SI) conventions, unless derived from references using non-SI units. In this report, units formed by the division of SI and non-SI units are expressed as a negative exponent, and do not use the solidus (/) symbol. For example:

- 3 milligrams per cubic metre would be presented as 3 mg·m⁻³ and not 3 mg/m³.
- 20 metres per second would be presented as 20 $m \cdot s^{-1}$ and not 20 m/s.

The following prefixes are added to unit names to produce multiples and sub-multiples of SI units:

Prefix	Symbol	Factor	Prefix	Symbol	Factor
Т	tera-	10 ¹²	р	pico-	10 ⁻¹²
G	giga-	10 ⁹	n	nano-	10 ⁻⁹
М	mega-	10 ⁶	μ	micro-	10 ⁻⁶
k	kilo-	10 ³	m	milli-	10 ⁻³
h	hector-	10 ²	С	centi-	10-2
da	deca	10 ¹	d	deci-	10 ⁻¹

Common Abbreviations

Abbreviation	Term
AGL	above ground level
AHD	Australian height datum
AQIA	air quality impact assessment
AQMS	air quality monitoring station
AWS	automatic weather station
ВоМ	Bureau of Meteorology
CH ₂ O	formaldehyde
СО	carbon monoxide
CSIRO	Commonwealth Scientific and Industrial Research Organisation
EPA	Environmental Protection Authority
g·s⁻¹	gram per second
ha	hectare
НАР	hazardous air pollutant
К	degrees Kelvin
m	metre
m·s ⁻¹	metres per second
mg·m⁻³	milligram per cubic metre of air
µg∙m⁻³	micrograms per cubic metre of air
mg·Nm⁻³	milligram per normalised cubic metre of air
MW	megawatt
NEPM	National Environment Protection Measure
NO	nitric oxide
NO _X	total oxides of nitrogen
NO ₂	nitrogen dioxide
ppb	parts per billion (1x10 ⁻⁹)
ppm	parts per million (1x10 ⁻⁶)
SO ₂	sulphur dioxide
ТАРМ	The Air Pollution Model
TSP	total suspended particulates
US EPA	United States Environmental Protection Agency
UTM	Universal Transverse Mercator

1. INTRODUCTION

Arcadis Australia Pacific Pty Ltd (Arcadis), on behalf of Alinta Energy (Reeves Plains) Pty Ltd (Alinta Energy), has engaged Northstar Air Quality Pty Ltd (Northstar) to perform an impact assessment study of the potential impacts upon air quality of the construction and operation of the Reeves Plains Power Station Project (the Project).

The Project involves the construction and operation of a series of six (6) 50-megawatt (MW) dual-fuel gas turbines to generate peak-demand electricity for export to the electricity grid.

The power station will be located at 1629 Redbanks Road on a 41 hectare (ha) greenfield site located in Reeves Plains, approximately 12 kilometres (km) south-east of Mallala and 50 km north of Adelaide (the Project site). The proposed site is located at 280,680 mE 6,179,275 mS (UTM).

The purpose of this Air Quality Impact Assessment is to assess the impact of the construction and operation of the Project upon air quality and determine compliance with the South Australia *Environmental Protection (Air Quality) Policy* (2016) (Air EPP).

1.1. Approach

During the preparation of this AQIA reference has been made to the South Australian Environment Protection Authority (EPA) specifications and requirements presented in Environment Protection Authority (2016) Ambient Air Quality Assessment¹ (EPA, 2016). That guidance publication sets out the EPA's requirements and expectations for an AQIA to adequately assess impacts upon air quality under the *Environment Protection Act* (1993) and the *Development Act* (1993).

Appendix G presents a Capability Statement, as specified in Appendix 1 of EPA 2016. **Appendix G** additionally presents the key requirements specified in EPA 2016 as relates to a dispersion modelling assessment.

1.2. Objective of the Study

The objective of this Air Quality Impact Assessment is to determine whether the proposed power station may be constructed and operated at the Project site without breaching the environmental objectives, evaluated as a risk in terms of construction dust, and compliance with the standards prescribed under the *Environment Protection (Air Quality) Policy* 2016 (Air EPP) during operation.

¹ http://www.epa.sa.gov.au/environmental_info/air_quality/assistance_and_advice

Where the AQIA identifies that those environmental objectives are not achievable, the objective is to identify further mitigation that may be applied to achieve those objectives, which may include changes to operational conditions, air pollution control or restricted operations, as appropriate.

1.3. Ambient Air Quality Standards

State air quality guidelines adopted by the South Australia EPA are published in the *Environment Protection* (*Air Quality) Policy* 2016 (Air EPP) under section 28 of the *Environment Protection Act* (1993). Where relevant to the expected potential scope of emissions to air from the operation of the power station (see **Section 2.3.2**), the ground level concentration standards are reproduced from Schedule 2 of the Air EPP in **Table 1** below:

Pollutant	Classification	Averaging time	Maximum concentration (mg·m ⁻³)	Maximum concentration (ppm)
Carbon monoxide (CO)	Toxicity	1 hour	31.24	25
		8 hours	11.12	9.0
Nitrogen dioxide (NO ₂)	Toxicity	1 hour	0.25	0.12
		12 months	0.06	0.03
Particles (as PM ₁₀)	Toxicity; Group 1 carcinogen	24 hours	0.05	-
Particles (as PM _{2.5})	Particles (as PM _{2.5}) Toxicity; Group 1 carcinogen		0.025	-
		12 months	0.008	-
Sulphur dioxide (SO ₂)	Sulphur dioxide (SO ₂) Toxicity		0.57	0.2
		24 hours	0.23	0.08
		12 months	0.06	0.02
Formaldehyde (CH ₂ O)	Toxicity; Group 1 carcinogen	3 minutes	0.044	0.033

Table 1	Air	EPP	ambient	air	standards
---------	-----	-----	---------	-----	-----------

The air quality standards presented in **Table 1** represent the standards to be achieved for the Project in this AQIA.

2. THE PROJECT

The following provides a description of the Project, the environmental setting and the identified potential emissions of air pollutants which may result from the construction and operation of the power station.

2.1. Environmental Setting

The Project site is located at Reeves Plains, approximately 12 km to the south-east of Mallala and approximately 14 km to the north-west of Gawler, as shown in **Figure 1**.

The 41 ha site is located to the south of the junction of Gawler Road and Days Road at Reeves Plains.

The Project site is located in a rural area, with mixed residential and agricultural land uses. The land at the Project site is flat and at a height of approximately 50-52 metres (m) Australian Height Datum (AHD).

Figure 1 Project location and surrounds

Source: Northstar Air Quality

2.2. Overview

The power station will operate as a 'peaker', providing electricity during periods of high demand, and is designed to generate up to 300 megawatts (MW) of power and will be delivered in two stages with up to 150 MW installed initially with further build out as required by prevailing market conditions. The Project includes the following infrastructure:

- A gas receival station;
- Up to six (6) dual fuel (gas and diesel) turbines each capable of generating 50 MW of power;
- Three (3) transformers designed to convert low voltage electricity into high voltage electricity
- Connection to the electricity network including a new substation, transmission tower and communications tower;
- Water supply and storage including:
 - Water treatment plant;
 - Water storage tanks;
 - Firefighting system;
- Evaporation pond; and
- Diesel storage.

Also included within the Project are the following:

- Control rooms, workshop and maintenance facilities and administration building;
- Security fencing and lighting;
- Onsite drainage works;
- Upgrade to the Redbanks Road and Day Road intersection and sealing of Day Road from Redbanks Road to the Project entrance;
- Carparking for employees and contractors;
- Demolition of existing buildings onsite; and
- Landscaping.

The Project is required to obtain development consent from the State Commission Assessment Panel before proceeding. Construction of the Project is scheduled to commence in 2018 with operation of the power station occurring in Q1 2020 at the earliest.

The power station will operate six (6) dual-fuel gas turbines and each turbine will discharge exhaust gases to atmosphere via a dedicated 3.5 metre (m) diameter emission stack at a discharge height of 15.5 m above ground level (AGL).

The proposed power station can be operated at various reduced load profiles, and emissions of air pollutants have been shown to vary according to the operating load (refer **Section 4.2**).

Further, the proposed power station is capable of operating on either natural gas or diesel as fuel. The Project is to operate the power station on natural gas with an option to operate on mineral diesel (hereafter referred to as 'diesel') in case of interruption of the gas supply and this AQIA considers the potential impacts of the operation of the power station operating on both fuels.

2.3. Potential for Emissions to Air

2.3.1. Construction

The potential emissions to air during the construction phase will be associated with the emission of particulates associated with the various construction activities, including: demolition; earthworks and enabling works; construction; track-out and construction traffic.

Additionally, the operation of construction vehicles and plant may give rise to short-term engine exhaust emissions, however given the low number of construction vehicles expected for such a development, these emissions have not been quantitatively assessed.

2.3.2. Operation

Potential emissions to air during operation of the power station are associated with products of combustion of the fuel. The power station will be equipped to operate principally on gas, but with a capability to operate on diesel should the gas supply not be available, and depending on the fuel consumed the rate of emissions may vary and consequently, the principal emissions during operation involve emissions of the following air pollutants:

- Oxides of nitrogen. Oxides of nitrogen (NO_X) are principally emitted as nitric oxide (NO), nitrogen dioxide (NO₂) and a small component of nitrous oxide (N₂O) and combined these gases are termed as total oxides of nitrogen (NO_X). These pollutants are formed in the combustion zone where the high operating temperatures generate thermal NO_X from the nitrogen in the air, and are typically emitted as 90-95% NO and 5-10% NO₂. Upon emission to the atmosphere, secondary reactions occur that oxidise NO to NO₂.
- **Carbon monoxide**. Carbon monoxide (CO) is a colourless and odourless gas, formed due to the incomplete combustion of fuel.
- Sulphur dioxide. Sulphur dioxide (SO₂) emissions are generated from the oxidation of sulphur in the fuel during combustion. Australian Standard (AS/NZS 4564) provides a limit of sulphur in natural gas of 50 milligrams per cubic metre of air (mg·m⁻³_{101.3kPa, 288 K}). The sulphur content of diesel is specified by the *Fuel Quality Standards Act (2000)* which limits the sulphur content to 10 parts per million (ppm).
- **Particulate matter**. Particulate matter (PM) may be generated through the combustion of fuels, and may be described in terms of the particle size fraction, including:

- TSP: Particulate matter with an aerodynamic diameter of (approximately) 30 micrometres (μm) to 10 μm;
- PM_{10} : Particulate matter with an aerodynamic diameter of 10 μ m or less; and
- PM_{2.5}: Particulate matter with an aerodynamic diameter of 2.5 μm or less.

The combustion of gas creates extremely low rates of particle emissions due to the nature of the fuel. The US Environmental Protection Agency (US EPA) identifies that particulate emissions from gas turbines is principally composed of larger molecular weight hydrocarbons that have been incompletely combusted, and virtually 100% are less than 1 μ m in diameter. For this project, given that virtually all particles emitted from the combustion of gas in a gas turbine are <1 μ m, particulates from gas are assessed as PM_{2.5}, which is a subset of PM₁₀.

In regard to particulates from diesel, again virtually 100% of diesel particles are less than 1 μ m in diameter, and given that virtually all particles emitted from the combustion of diesel are <1 μ m, particulates from diesel are assessed as PM_{2.5}.

• Hazardous air pollutants. Hazardous air pollutants (HAP) is a term applied to a range of pollutants. The US EPA AP-42 states: "available data indicate that emission levels of HAP are lower for gas turbines than for other combustion sources. This is due to the high combustion temperatures reached during normal operation. The emission data also indicate that formaldehyde is the most significant HAP emitted from combustion turbines. For natural gas fired turbines, formaldehyde accounts for about two-thirds of the total HAP emissions..."

The rate at which pollutants are emitted to atmosphere will further vary by the load requirements on the power station. For the purposes of this assessment, the emission rates have been estimated for each fuel type (gas and diesel) at four load points: 100% load (maximum); 75% load; 50% load; and 25% load.

Further details regarding the estimation of emissions are provided in Section 4.2.

3. EXISTING CONDITIONS

3.1. Topography

The elevation of the proposed site of the power station is approximately 51 m AHD. The topography of the surrounding area gradually increases with distance from the coast, but is generally flat, as shown in **Figure 2** and **Figure 3**.

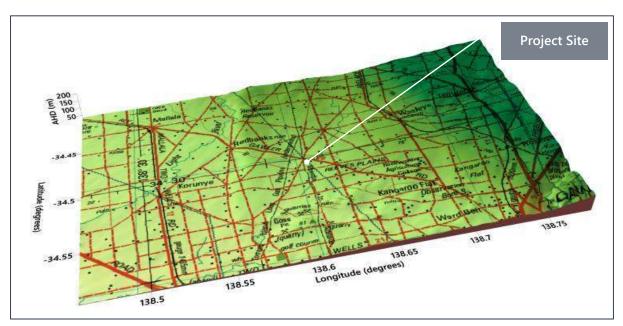
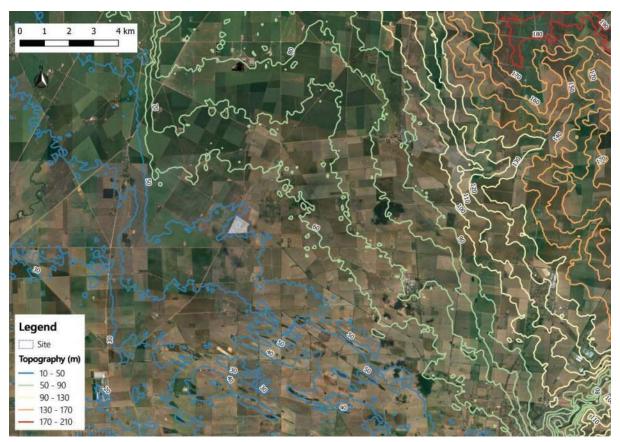



Figure 2 Topography surrounding the project site (3-D projection)

Source: Northstar Air Quality

Figure 3 Topography surrounding the project site (2-D projection)

Source: Northstar Air Quality

3.2. Surrounding Land Sensitivity

3.2.1. Discrete Receptor Locations

Air quality assessments typically use a desk-top mapping study to identify 'discrete receptor locations', which are intended to represent a selection of locations that may be susceptible to changes in air quality. In broad terms, the identification of sensitive receptors refers to places at which humans may be present for a period representative of the averaging period for the pollutant being assessed. Typically, these locations are identified as residential properties although other sensitive land uses may include schools, medical centres, places of employment, recreational areas or ecologically sensitive locations.

 Table 2 represents the discrete receptor locations that have been identified as part of this study (see also

 Figure 4 and Figure 5).

The table and figures are not intended to represent a definitive list of sensitive land uses, but a cross section of available locations that are used to characterise larger areas, or selected as they represent more sensitive locations which may represent people who are more susceptible to changes in air pollution than the general population.

Table 2 Discrete sensitive receptor locations used in the study

Receptor Land Use		Location (m, UTM)		
		m E	m S	
R1	81 Woolsheds Rd	280,802	6,180,445	
R2	30 Worden Rd	280,887	6,180,723	
R3	228 Worden Rd	281,208	6,182,691	
R4	1152 Wasleys Rd	281,000	6,183,054	
R5	1149 Wasleys Rd	280,988	6,183,329	
R6	1227 Wasleys Rd	281,824	6,183,173	
R7	347 Wasleys Rd	282,267	6,182,599	
R8	262 Woolsheds Rd	282,132	6,181,850	
R9	64 Woolsheds Rd	281,055	6,180,364	
R10	43 Dogleg Rd	281,546	6,179,695	
R11	67 Dogleg Rd	281,717	6,179,745	
R12	77 Dogleg Rd	281,895	6,179,716	
R13	264 Boundary Rd	282,355	6,179,801	
R14	236 Boundary Rd	282,316	6,179,937	
R15	21-43 Bache Rd	282,118	6,180,067	
R16	43 Bache Rd	281,974	6,180,028	
R17	57 Bache Rd	281,893	6,180,127	
R18	75 Bache Rd	281,589	6,180,133	
R19	206 Boundary Rd	282,292	6,180,331	
R20	164 Boundary Rd	282,296	6,180,531	
R21	351 Boundary Rd	282,439	6,178,681	
R22	312 Buckby Rd	284,644	6,179,971	
R23	332 Selleck Rd	285,286	6,180,921	
R24	448 Oliver Rd	285,218	6,186,065	
R25	1 Wasleys Rd	286,333	6,182,891	
R26	23 Henry Turton Circuit	286,806	6,182,682	
R27	18 Pratt Rd	287,518	6,182,285	
R28	11 Mitchell Rd	287,817	6,180,228	
R29	Roseworthy College Hall	287,781	6,176,833	
R30	1357 Redbanks Rd	282,991	6,177,713	
R31	1005 Redbanks Rd	286,078	6,175,841	
R32	248 Fairlie Rd	286,767	6,173,164	
R33	364 Mortimer Rd	283,767	6,173,540	
R34	Aunger Rd N	280,940	6,178,220	
R35	236 Day Rd	279,363	6,177,606	
R36	334 Day Rd	279,072	6,176,764	
R37	206 Gregor Rd	281,817	6,175,884	
R38	513 Day Rd	277,563	6,175,602	
R39	560 Jenkin Rd	275,398	6,174,285	

Receptor	Land Use	Location (m, UTM)		
		m E	m S	
R40	1061 Germantown Rd	275,495	6,177,173	
R41	1321 Germantown Rd	275,457	6,178,960	
R42	86 Hall Rd	276,178	6,181,208	
R43	70 Hall Rd	276,162	6,181,408	
R44	40 Hall Rd	276,155	6,181,733	
R45	26 Hall Rd	276,123	6,181,970	
R46	325 Hall Rd	276,443	6,179,020	
R47	715 Verner Rd	278,479	6,178,454	
R48	188 Cheek Rd	277,319	6,183,792	
R49	1800 Redbanks Rd	279,581	6,180,379	
R50	1561 Redbanks Rd	281,638	6,179,015	
R51	1806 Redbanks Rd	279,209	6,179,731	

The receptors used in the study have been selected to include a range of receptor locations in all directions from the site, to account for the potential changes due to the prevailing meteorology.

The receptor closest to the boundary of the Project site is Receptor 10 [R10], located at 43 Dogleg Road which is approximately 500 m from the site.

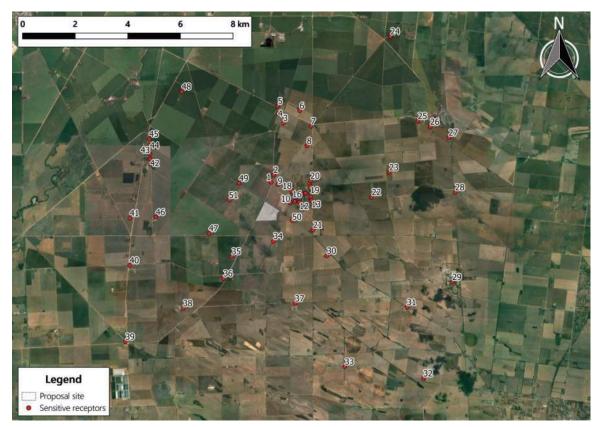

Due to the geographical spread of the receptors used in this study, the maps showing the receptor locations have been replicated to show a closer view (larger scale) showing those receptor locations closer to the site boundary, and a wide view (smaller scale) showing those less proximate. The closer view is presented in **Figure 4** and the wide view is presented in **Figure 5**. Some receptors are identified on both Figures.

Figure 4 Discrete receptor locations used in the AQIA (close view)

Source: Northstar Air Quality

3.2.2. Uniform Receptor Locations

Additional to the sensitive receptors identified in **Section 3.2.1**, a grid of receptor locations has been used in the AQIA to allow presentation of contour plots of predicted impacts.

The grid of uniform receptors covers a longitudinal and latitudinal distance of 20,000 m, covering an area of 400 square kilometres, from UTM 271,530 mE, 6,169,050 mS.

The grid resolution has been set at 25 m (approx. $1.5 \times$ stack height) and this represents over 640,000 receptor locations.

3.3. Air Quality

The air quality experienced at any location will be a result of emissions generated by natural and anthropogenic sources on a variety of scales (local, regional and global). The relative contributions of sources at each of these scales to the air quality at a location will vary based on a wide number of factors including the type, location, proximity and strength of the emission source(s), prevailing meteorology, land uses and other factors affecting the emission, dispersion and fate of those pollutants.

When assessing the impact of any particular source of emissions on the potential air quality at a location, the impact of all other local and regional sources of an individual pollutant must also be assessed. This 'background' air quality will vary depending on the pollutants to be assessed, and can often be characterised by using representative air quality monitoring data.

The EPA maintain and operate a number of ambient air quality monitoring stations (AQMS) across South Australia. The on-line data resource maintained by the EPA has been accessed from the South Australia Government Data Directory² and the data recorded at the various AQMS have been reviewed for the purposes of establishing a suitable and representative baseline assumption for use in this AQIA. The air quality (and meteorological) sources of data used in this AQIA are illustrated in **Figure 6**.

Further details, including summary statistics, distribution and graphs of measured background air pollutants are presented in **Appendix B**.

² https://data.sa.gov.au/data/dataset?tags=air+quality&organization=environment-protection-authority-epa

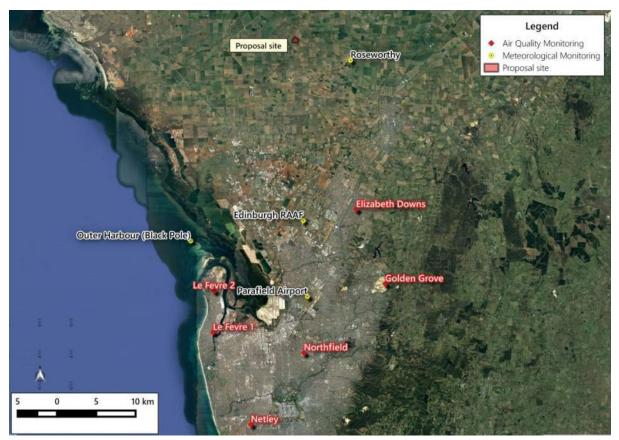


Figure 6 Sources of air quality and meteorological data used in the study

Source: Northstar Air Quality

3.3.1. Source of Data for Background Gaseous Pollutants

The most proximate AQMS to the Project site is the Elizabeth Downs monitoring station, located in the grounds of Elizabeth Downs Primary School at 12 Heard Street, Elizabeth Downs, approximately 22.5 km to the south south-east of the Project site. The AQMS is located in the middle of a highly urbanised location, and as such the data measured at the site will be significantly influenced by urban emission sources, including road traffic. It is therefore considered that the use of this site as proxy data to represent the Project site would be conservative.

Elizabeth Downs AQMS does not measure SO_2 and so surrogate measurements taken at Adelaide Northfield have been used to characterise the background conditions.

08000 Call northstar

3.3.2. Source of Data for Background Particulates

At the request of the EPA, Netley AQMS was referenced as the monitoring location to determine background particulate concentrations. Netley AQMS is located on a commercial lot near to the junction of Richmond Road and Transport Avenue in Netley, Western Adelaide. It is located approximately 50 km to the south south-west of the Project site in an urbanised location, and approximately 250 m from the boundary of Adelaide Airport and as such, it is considered that the use of this data to represent the Project site is highly conservative.

3.3.3. Application of Background Data

The application of recent background data to predicted dispersion modelling results for 2009 (the EPA's preferred 'reference' year [see **Section 3.4**]) needs to be undertaken with care. Clearly, applying a contemporaneous approach (as is used in other jurisdictional areas in Australia) is not appropriate as the conditions of meteorology during 2009 and background variations during 2015 are not concurrent and clearly not appropriate.

Alternative to this is to use a constant single value to represent the conditions at the Project site over the assessment year (2009). The application of the measured annual average background concentration to predictions of incremental annual average is clearly applicable, as this does not need to account for conditions that give rise to short-term elevations in emissions. However, that approach would also under-predict short term cumulative predictions although that approach has been used historically in South Australia, for example SA Water *Proposed Adelaide Desalination Plant Environmental Impact Statement, Chapter 9: Noise, Dust, Odour and Waste Management.* That assessment, performed by Connell Wagner, used the annual average PM₁₀ concentration as background to evaluate the 24-hour PM₁₀ impacts, and was approved on that basis.

Other recent studies, for example the AQIA for the Duplication of the Southern Expressway³ has used the 90th percentile of short-term measurements, and this is considered to be conservative and appropriate for this study.

Summary details of air quality measurements at the Elizabeth Downs, Netley and Northfield AQMS are presented in **Appendix B**. The baseline data derived from the monitoring data is summarised in **Table 3**.

³ https://dpti.sa.gov.au/__data/assets/pdf_file/0020/59402/Part_B_Chapter_16_Air_quality.pdf

Pollutant	Averaging	Concentration	Notes
	Period	Value Assumed	
Carbon monoxide (CO)	1-hour	0.04 mg·m⁻³	90%ile of 1-hour CO, Elizabeth Downs, 2015
	8-hour	0.05 mg·m⁻³	90%ile of 8-hour CO, Elizabeth Downs, 2015
Nitrogen dioxide (NO ₂)	1 hour	20.5 µg·m⁻³	90%ile of 1-hour NO ₂ , Elizabeth Downs, 2015
	annual average	8.2 μg⋅m⁻³	Annual average NO ₂ , Elizabeth Downs, 2016
Particulates (as PM ₁₀)	24-hour	15.7 μg∙m⁻³	90%ile of 24-hour PM ₁₀ , Netley, 2015
Particulates (as PM _{2.5})	24-hour	10.4 µg∙m⁻³	90%ile of 24-hour PM _{2.5} , Netley, 2015
	annual average	7.3 μg⋅m ⁻³	Annual average PM _{2.5} , Netley, 2015
Sulphur dioxide (SO ₂)	1-hour	28.6 µg·m⁻³	Maximum 1-hour SO ₂ , Northfield 2015
	24-hour	5.8 μg⋅m⁻³	Maximum 24-hour SO ₂ , Northfield 2015
	annual average	0.2 μg⋅m⁻³	Annual average SO ₂ , Northfield 2015
Formaldehyde (CH ₂ O)	1-hour	0 μg·m⁻³	Assumed to be negligible (zero) for the
			purposes of the AQIA

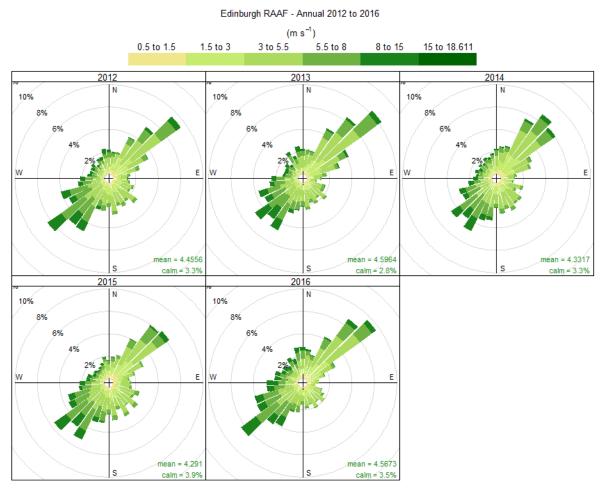
Table 3 Summary of assumed background concentrations

Reference should be made to **Appendix B** for details of the background air quality conditions.

3.4. Meteorology

This section briefly discusses the existing meteorology in the area, using measurements taken from neighbouring Automatic Weather Stations (AWS) operated by the Australian Government Bureau of Meteorology (BoM). The meteorology used in the dispersion modelling assessment is discussed in **Section 4.2.5**.

The meteorology experienced within an area can govern the dispersion, transport and eventual fate of pollutants in the atmosphere. The meteorological conditions surrounding the power station site have been characterised using data collected by the BoM, and a summary of the relevant AWS monitoring site locations is provided in **Table 4**.

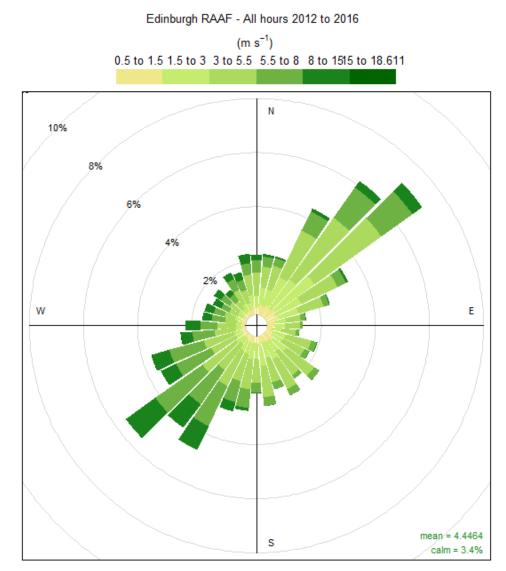

T I I A		1	11 AL	
Table 4	Details of meteorologica	l monitorina	surrounding the	power station

Site Name	Approximate Location (Latitude, Longitude)		
	°S	°E	
Edinburgh RAAF – Station # 023083	34.71	138.62	
Outer Harbour – Station # 023052	34.73	138.47	
Parafield Airport – Station # 023013	34.80	138.63	

Details of the prevailing meteorology are presented in **Appendix A**, however for clarity the wind roses for Edinburgh RAAF AWS are also presented in **Figure 7**.

Figure 7 Annual wind roses 2012 to 2016, Edinburgh RAAF AWS

Frequency of counts by wind direction (%)


Source: Northstar Air Quality

The wind roses indicate that from 2012 to 2016, winds at Edinburgh RAAF AWS show a predominant southwesterly wind direction with a north-easterly and south-easterly components also evident, and there is little in the way of annual variation. The majority of wind speeds experienced at the Edinburgh RAAF AWS between 2012 and 2016 are generally in the range 1.5 metres per second ($m \cdot s^{-1}$) to 5.5 $m \cdot s^{-1}$ with the highest wind speeds (greater than 8 $m \cdot s^{-1}$) occurring from a south easterly direction. Winds of this speed are rare and occur during 1.1% of the observed hours during the years. Calm winds (<0.5 $m \cdot s^{-1}$) occur for less than 3.7% of hours across the years.

Presented in **Figure 8** is the long-term wind rose for the 2012 to 2016 period and the annual wind speed distribution for Edinburgh RAAF AWS.

Figure 8 Long-term wind rose (2012 to 2016), Edinburgh RAAF AWS

Frequency of counts by wind direction (%)

Source: Northstar Air Quality

Page left intentionally blank

4. METHODOLOGY

4.1. Construction Phase Risk Assessment

Construction phase activities have the potential to generate short-term emissions of particulates. Generally, these are associated with uncontrolled (or 'fugitive') emissions and are typically experienced by neighbours as amenity impacts, such as dust deposition and visible dust plumes, rather than associated with health-related impacts. Localised engine exhaust emissions from construction machinery and vehicles may also be experienced, but given the scale of the proposed works, fugitive dust emissions would have the greatest potential to give rise to downwind air quality impacts.


Modelling of dust from construction sites is generally not considered appropriate, as there is a lack of reliable emission factors from construction activities upon which to make predictive assessments, and the rates would vary significantly depending upon local conditions, construction practices and implemented dust mitigation measures. In lieu of a modelling assessment, the construction phase impacts associated with the Project have been assessed using a risk-based assessment procedure. The advantage of this approach is that it determines the activities that pose the greatest risk, which allows the Construction Environmental Management Plan (CEMP) to focus controls to manage that risk appropriately, and reduce the impact through proactive management.

For this risk assessment, Northstar has <u>adapted</u> a methodology presented in the Institute of Air Quality Management (2014) *IAQM Guidance on the Assessment of Dust from Demolition and Construction* (IAQM 2014) developed in the United Kingdom⁴. Reference should be made to **Appendix D** for the methodology.

Briefly, the adapted method uses a six-step process for assessing dust impact risks from construction activities, and to identify key activities for control, as illustrated in **Figure 9**.

⁴ www.iaqm.co.uk/text/guidance/construction-dust-2014.pdf

Source: Northstar Air Quality, adapted from IAQM 2014)

The assessment approach is detailed in Appendix D.

4.2. Operational Phase Impact Assessment

The following provides a brief description of the methodology used to assess the potential air quality impacts resulting from the operation of the proposed power station at the varying load profiles. The Project is to construct and operate six open-cycle gas turbines operating on gas, with a capacity to operate on diesel as a support fuel in case of interruption of the gas supply.

Reference has been made to the specifications and requirements presented in Environment Protection Authority (2016) Ambient Air Quality Assessment⁵ and a practitioner capability statement has been presented in **Appendix G**.

The location to the six turbines will be as indicated in Table 5.

Table 5Turbine locations

Unit No	Туре	Co-ordinates (MGAZ54)			
		mE	mS		
1	Point source	280,541	6,179,051		
2	Point source	280,538	6,179,091		
3	Point source	280,535	6,179,127		
4	Point source	280,532	6,179,167		
5	Point source	280,530	6,179,205		
6	Point source	280,527	6,179,242		

⁵ http://www.epa.sa.gov.au/environmental_info/air_quality/assistance_and_advice

08000 Constant

4.2.1. Emissions Estimation (Gas)

The estimation of emissions from the power station operating on gas has been informed from emission estimates provided by Alinta Energy, and assumed to be representative of the emissions from the Project.

Table 6 below presents a summary of the emissions data estimates used in this assessment for gas operatingat 100% load; 75% load; 50% load and 25% load. Full details are presented in **Appendix C**.

Pollutant	Units	Reference Conditions	Engine Load (% of Capacity)				
			100	75	50	25	
Gas Volumetric Disch	Gas Volumetric Discharge						
Discharge rate	Nm ³ ·hr ⁻¹	STP, dry, 15% O ₂	241,796.9	197,070.3	153,710.9	128,906.3	
Temperature	°C		395	390	434	421	
Velocity	m·s⁻¹	Stack temperature	17.08	13.82	11.49	9.45	
Emission Rate							
NO _X (as NO ₂)	g·s⁻¹		3.4389	2.8028	2.1861	1.8333	
СО	g·s⁻¹		2.0956	1.7079	1.3322	1.1172	
SO ₂	g·s⁻¹		0.5496	0.4488	0.3524	0.2935	
PM _{2.5}	g·s⁻¹		0.3780	0.3780	0.3780	0.3780	
Formaldehyde	g·s⁻¹		0.0341	0.1192	0.0924	0.0684	

Table 6 Emissions per engine operating on gas

Sulphur dioxide emissions operating on gas have been estimated from an assumed fuel sulphur content in natural gas of 50 mg·m⁻³ (101.3kPa, 288 K) as specified in Australian Standard (AS/NZS 4564), and the emission rates provided by Alinta Energy (assuming a nominal 0.1% sulphur) have been scaled accordingly to represent anticipated sulphur content.

Formaldehyde emissions operating on gas have been estimated from the emission rates published in US EPA (1995) *Compilation of Air Pollutant Emission Factors AP-42, Volume 1, Chapter 3: Stationary Internal Combustion Sources (fifth edition)* (USEPA 1995), Section 3.1, Table 3.1-3:

Formaldehyde 7.09×10^{-4} lb·MMBtu⁻¹ (7.23 $\times 10^{-1}$ lb·MMscf) (loads > 80%, i.e. 100% load) (emission factor rating A)

3.12x10⁻³ lb·MMBtu⁻¹ (3.18x10⁰ lb·MMscf) (all loads, i.e. 75%, 50% and 25% loads)

The above published formaldehyde emission factors were used in conjunction with provided gas consumption rates for all loads (see **Appendix F**), assuming an AP-42 derived natural gas reference temperature of 60° F (15.6°C), and a gas density of approximately 0.8 kg·m⁻³.

4.2.2. Emissions Estimation (Diesel)

The estimation of emissions from the power station operating on diesel has been informed from emission estimates provided by Alinta Energy, and assumed to be representative of the emissions from the Project.

Table 7 below presents a summary of the emissions data estimates used in this assessment for gas operatingat 100% load; 75% load; 50% load and 25% load. Full details are presented in **Appendix C**.

Pollutant	Units	Reference Conditions	Engine Load (% of Capacity)					
			100	75	50	25		
Gas Volumetric Di	Gas Volumetric Discharge							
Discharge rate	Nm ³ ·hr ⁻¹	STP, dry, 15% O ₂	216,179.0	178,415.6	163,453.8	122,732.5		
Temperature	°C	-	399	413	437	423		
Velocity	m∙s ⁻¹	Stack temperature	15.36	12.95	12.27	9.03		
Emission Rate								
NO _x (as NO ₂)	g·s⁻¹	-	10.4667	8.6333	7.9139	5.9389		
СО	g·s⁻¹	-	1.8736	1.5463	1.4166	1.0637		
SO ₂	g·s⁻¹	-	0.0468	0.0386	0.0361	0.0271		
PM _{2.5}	g·s⁻¹	-	0.3780	0.3780	0.3780	0.3780		
Formaldehyde	g·s⁻¹	-	0.0063	0.0055	0.0058	0.0051		

Table 7 Emissions per engine operating on diesel

Sulphur dioxide emissions operating on diesel have been estimated from an assumed fuel sulphur content of 10 ppm (0.0001% v/v) as specified by the *Fuel Quality Standards Act (2000)* and the emission rates provided by Alinta Energy (assuming a nominal 0.1% sulphur) have been scaled accordingly to represent actual sulphur content.

Formaldehyde emissions operating on diesel have been estimated from the emission rates published in US EPA *AP-42, Volume 1, Chapter 3: Stationary Internal Combustion Sources*, Section 3.1, Table 3.1-4:

Formaldehyde 2.82×10^{-4} lb·MMBtu⁻¹ (3.92×10^{-2} lb·1000gal) (loads > 80% i.e. 100% load) (emission factor rating B)

2.45x10⁻⁴ lb·MMBtu⁻¹ (3.41x10⁻² lb·1000gal) (all loads i.e. 75%, 50% and 25% loads)

The above published formaldehyde emission factors were used in conjunction with provided diesel consumption rates for all loads (see **Appendix F**), and assuming a diesel fuel density of approximately $0.832 \text{ kg} \cdot \text{L}^{-1}$.

Further details are provided in **Appendix C**.

4.2.3. Start-Up Emissions

The figure below is reproduced from Figure 5-11 '*LM6000 10 minutes start cycle*' as presented in GE Energy (2008) LM6000-50/60 Hz Gas Turbine Generator Set Product Specification (GE Energy 2008), as reproduced in **Appendix H**. The product specification presented in **Appendix H** shows that the proposed LM6000 Sprint[®] turbines are capable of completing the start-up and ramp-up to full-load within a 10-minute start-up cycle.

"It can also start and stop easily for "peaking" or "dispatched" applications. Additionally, quick dispatchability is available in simple-cycle applications with the 10-minute fast start feature."

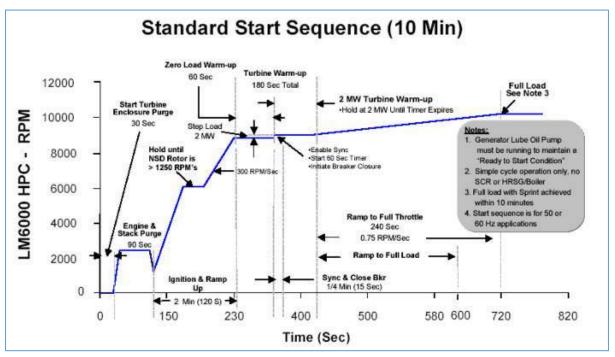
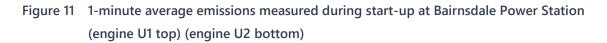
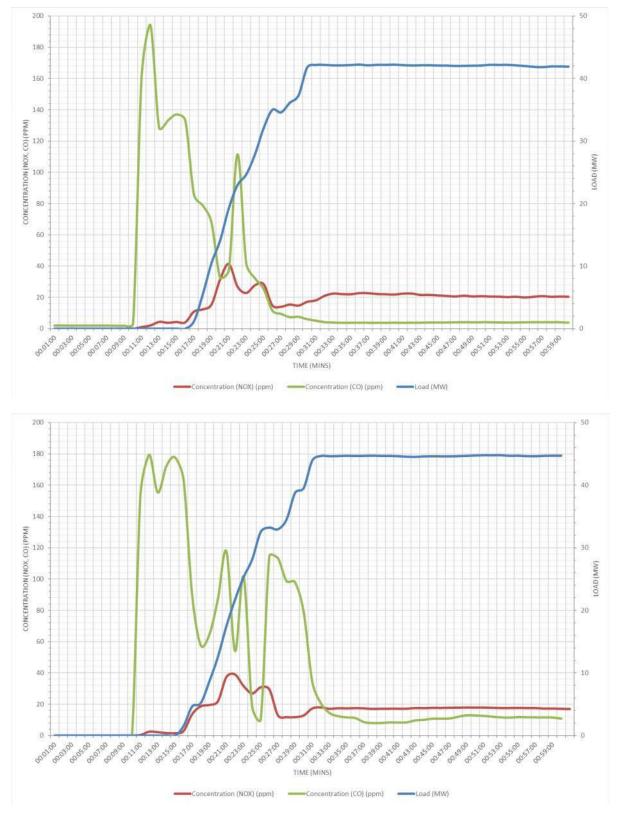


Figure 10 LM6000 Sprint® start up cycle


Source: GE Energy 2008


The start-up cycle is important, as the products of combustion during non-ideal conditions are different than those generated when the turbine is operating normally under load, and this is a significant consideration for a peaking plant.

The emission estimates presented in **Section 4.2.1** and **Section 4.2.2** for gas and diesel respectively, and presented in more detail in **Appendix C**, are derived from emissions data supplied directly by Alinta Energy.

To address the issue of start-up emissions, Alinta has provided emissions data from the Bairnsdale Power Station (using similar technology to that proposed at Reeves Plains), and those data are presented in **Figure 11** below for two turbine sets (names U1 and U2):

Source: Northstar Air Quality

Based upon the data summarised above, the maximum 1-min peak CO and NO_x measured data during the start-up cycle has been compared to the average steady-state emissions during normal operations. For the purposes of this AQIA, this cut-off time between start-up and normal operations has been assumed to be at 32 minutes (see **Figure 11**). It is the numerical relationship between the <u>maximum</u> value before 32 minutes and the average value after 32 minutes that is important, not the actual values.

Pollutant (<i>p</i>)	Operational Emission Rate	Start-Up Emission Rate	Start-Up Weighting <i>Fp</i>
СО	7.4	186.8	25.12
NO _x (as NO ₂)	19.4	40.2	2.07

Table 8	Factor weighted emissions profiles for start-up and shut-down (U1 and U2)
---------	---

Considering the 10-minute start up cycle of the proposed generators (see **Appendix H**), the resultant hourly emission rates may be estimated assuming a time weighted averaging approach. Using the above, the results of the operational phase AQIA may be sequentially factored for start-up emissions to the determination short-term (1-hour) impacts during start-up. These factors have been used to conservatively estimate the predicted ground-level concentrations of CO and NO_x (as NO₂) during the start-up cycle, and are used in **Section 6.2**.

The measured data shows that the engines may emit short-term spikes of CO during start-up and a smaller differential of NO_x emissions (as represented in the start-up weighting factors presented in **Table 8**). The data presented in **Figure 11** also shows that the emission rate of CO and NO_x does not vary significantly with load, supporting the assumptions presented in **Sections 4.2.1 - 4.2.2**.

4.2.4. Dispersion Modelling

Emissions from the power station have been modelled using the US EPA's AERMOD modelling system. The SA EPA makes the following observations regarding AERMOD (EPA 2016):

AERMOD

AERMOD is a new generation Gaussian plume dispersion model developed by the US EPA. The model is an improvement on Ausplume in that it incorporates recent boundary layer theory and advanced methods for handling:

- terrain
- dispersion under stable and unstable conditions
- plume rise and buoyancy
- plume penetration into elevated inversions
- treatment of elevated near-surface and surface-level sources
- computation of vertical profiles of wind
- turbulence
- temperature
- terrain effects on plume behaviour.

AERMOD also includes algorithms to take into account the effects of any buildings near the emission source/s. EPA Victoria has recently changed its preferred regulatory model from Ausplume to AERMOD.

Given the relatively flat and simple terrain of the study area surrounding the Project site, it is considered that AERMOD is an appropriate dispersion model for use in this study.

4.2.5. Meteorological Processing

Dispersion models require meteorological data as input to affect the dispersion and transport of pollutants emitted from a source.

A detailed summary of the application of local meteorology over the period from 2012 to 2016 is discussed in the Existing Conditions chapter in **Section 3.4** and discussed in further detail in **Appendix A**.

As required by the EPA, the dispersion modelling assessment that underpins the AQIA has used a reference calendar year of 2009. The EPA has requested that this year is used to provide a level of consistency between various studies, and to avoid the unintentional use of meteorological data not representative of long-term trends.

For clarity, this AQIA has used 2009 as the reference year, compliant with the requirements of the EPA.

Meteorological modelling using The Air Pollution Model (TAPM, v 4.0.5) has been performed to predict the meteorological parameters for 2009 that are required for AERMOD. TAPM, developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) is a prognostic model which may be used to predict three-dimensional meteorological data and air pollution concentrations.

TAPM predicts wind speed and direction, temperature, pressure, water vapour, cloud, rain water and turbulence. The program allows the user to generate synthetic observations by referencing databases (covering terrain, vegetation and soil type, sea surface temperature and synoptic scale meteorological analyses) which are subsequently used in the model input to generate site-specific hourly meteorological observations at user-defined levels within the atmosphere.

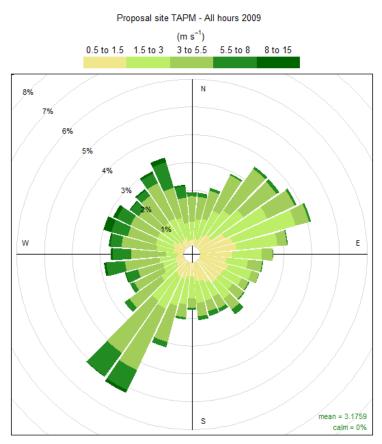
The parameters used in TAPM modelling are presented in **Table 9** and presented in further detail in **Appendix A**.

TAPM v 4.0.5	
Modelling period	1 January 2009 to 31 December 2009
Centre of analysis	280,713 mE, 6179,316 mN (UTM Coordinates)
Number of grid points	70 × 70 × 25
Number of grids (spacing)	4 (20 km, 10 km, 3 km, 1 km)
Terrain	AUSLIG 9 second DEM
Data assimilation	None

Table 9 Meteorological Parameters used for this Study

A comparison of the TAPM generated meteorological data, and BoM observations is presented in **Appendix A**. For completeness, the TAPM model predictions have been extracted and compared to BoM observations at the following locations:

- Edinburgh RAAF AWS
- Outer Harbour AWS


It is observed that these data generally compare well, and this provides confidence that the meteorological conditions modelled as part of this assessment are appropriate.

Appendix A provides graphical summaries of the TAPM predicted meteorological conditions at the Project site, including:

- Hourly mixing heights at the Project site for 2009;
- Hourly ambient temperatures at the Project site for 2009;
- Hourly wind speed and direction at the Project site for 2009.

The predicted wind-rose distribution of wind speed and direction data is presented in Figure 12 below:

Figure 12 Predicted wind speed and direction – Project site 2009

Frequency of counts by wind direction (%)

Source: Northstar Air Quality

For clarity, this data has been used by AERMET / AERMOD in the dispersion modelling.

4.2.6. Short-Term Impacts

The time resolution of dispersion modelling is defined by the hourly limitation of the meteorology, which uses hourly averaged data.

With regard to predicting the potential impacts of HAP (as formaldehyde) (see **Section 2.3.2**) the predicted impact is required to be compared against the 3-minute average criterion (see **Section 1.3**). To derive this prediction from the maximum 1-hour average prediction, the following Power Law adjustment has been applied⁶:

$$C_{p,t} = C_{p,60} \left[\frac{60}{t}\right]^{0.2}$$

Where:

$C_{p,t}$	=	concentration of pollutant (p) at averaging time (mins) (t)
Ср,60	=	concentration of pollutant (p) at modelled averaging time (60 mins)
t	=	time (mins)

4.2.7. Particle Size Fractions

The technical specification documents indicate that the proposed turbines are capable of operating on dual fuel with a maximum particle emission rate of 3 pounds (lbs) per hour.

As outlined in **Section 2.3.2**, the USEPA has published that virtually 100% of particulates emitted from gas and diesel combustion in turbines is $<1\mu$ m in diameter and correspondingly it is considered reasonable to assess the potential particulate emissions as PM_{2.5}.

As $PM_{2.5}$ is a 'subset', or a component of PM_{10} , the AQIA also presents the predicted PM_{10} impacts albeit it that the predicted results are identical.

4.2.8. NO_X to NO₂ Reactions

The emission rates of oxides of nitrogen (NO_x) have been modelled as nitrogen dioxide (NO₂). As discussed in **Section 2.3.2**, approximately 90% - 95% of NO_x from a combustion process will be emitted as NO, with the remaining 5% - 10% emitted directly as NO₂. Over time and after the point of discharge, NO in ambient air will be transformed by secondary atmospheric reactions to form NO₂, and this reaction often occurs at a considerable distance downwind from the point of emission, and by which time the plume will have dispersed and diluted significantly from the concentration at point of discharge.

⁶ http://www.epa.vic.gov.au/~/media/Publications/1551.pdf

Air quality impact assessments need to account for the conversion of NO to NO_2 to enable a comparison against the air quality criterion for NO_2 . To perform this, various techniques are common, which are briefly outlined below:

- **100% conversion**: the most conservative assumption is to assume that 100% of the total NO_X emitted is discharged as NO₂, and that further reactions do not occur.
- Jansen method: where the location is represented by good monitoring data for NO and NO_{x} , the empirical relationship between NO and NO_2 may be used to derive 'steady state' relationships.
- **Ozone limiting method**: this method uses contemporaneous ozone data to estimate that rate at which NO is oxidised to NO₂ hour-on-hour using an established relationship.

This AQIA assumes that 100% of the emitted NO_X is in the form of NO_2 , which presents the most conservative approach.

5. CONSTRUCTION PHASE RISK ASSESSMENT

The area of the site as a whole is approximately 41 hectares (ha) although the footprint of the site which is to be affected by works and installed infrastructure is estimated as approximately 12 ha in area (120,000 m²).

The Project would involve the preparation of the ground with some minor grading, and the construction of a piled concrete pad upon which the turbines and associated infrastructure will be located. The Project will not involve any demolition as the land is currently undeveloped.

The assumed supply route around the Project site during construction works may be up to 275 m one-way. It may be anticipated that >50 heavy vehicle movements would be required each day to service the Project site. For the purposes of the assessment, the route for construction traffic to/from the site is assumed to be along Wilton Road, in either direction of the site.

The screening criteria applied to the identified sensitive receptors are whether they are located in excess of:

- 350 m from the boundary of the site.
- 500 m from the site entrance.
- 50 m from the route used by construction vehicles on public roads.
- Track-out is assumed to affect roads up to 100 m from the site entrance.

 Table 10 presents the identified discrete sensitive receptors, with the corresponding estimated screening distances as compared to the screening criteria.

Table 10	Construction	phase impact	screening	criteria distances
10010 10	00115010011	pridoc impact	. sereering	cificeria anstarices

Rec	Location	Land Use	Screening Distance (m)		e (m)
			Boundary	Site	Construction
				Entrance	route
			(350m)	(500m)	(50m)
R1	81 Woolsheds Rd	Residential	757	1,041	>50
R2	30 Worden Rd	Residential	1,048	1,300	>50
R3	228 Worden Rd	Residential	3,036	3,262	>50
R4	1,152 Wasleys Rd	Residential	3,361	3,622	>50
R5	1,149 Wasleys Rd	Residential	3,633	3,897	>50
R6	1,227 Wasleys Rd	Residential	3,669	3,820	>50
R7	347 Wasleys Rd	Residential	3,334	3,393	>50
R8	262 Woolsheds Rd	Residential	2,631	2,649	>50
R9	64 Woolsheds Rd	Residential	796	931	>50
R10	43 Dogleg Rd	Residential	516	564	>50
R11	67 Dogleg Rd	Residential	685	739	>50
R12	77 Dogleg Rd	Residential	831	894	>50
R13	264 Boundary Rd	Residential	1,290	1,358	>50

Rec	Location	Land Use	Screening Distance (m)		
			Boundary	Site	Construction
				Entrance	route
			(350m)	(500m)	(50m)
R14	236 Boundary Rd	Residential	1,305	1,366	>50
R15	21-43 Bache Rd	Residential	1,198	1,245	>50
R16	43 Bache Rd	Residential	1,058	1,102	>50
R17	57 Bache Rd	Residential	1,062	1,095	>50
R18	75 Bache Rd	Residential	875	885	>50
R19	206 Boundary Rd	Residential	1,495	1,535	>50
R20	164 Boundary Rd	Residential	1,632	1,663	>50
R21	351 Boundary Rd	Residential	1,409	1,582	>50
R22	312 Buckby Rd	Residential	3,559	3,637	>50
R23	332 Selleck Rd	Residential	4,428	4,493	>50
R24	448 Oliver Rd	Residential	7,829	7,835	>50
R25	1 Wasleys Rd	Residential	6,271	6,316	>50
R26	23 Henry Turton Circuit	Residential	6,561	6,612	>50
R27	18 Pratt Rd	Residential	7,012	7,071	>50
R28	11 Mitchell Rd	Residential	6,737	6,816	>50
R29	Roseworthy College Hall	Educational	7,057	7,218	>50
R30	1,357 Redbanks Rd	Residential	2,322	2,595	>50
R31	1,005 Redbanks Rd	Residential	5,931	6,182	36
R32	248 Fairlie Rd	Residential	8,169	8,486	>50
R33	364 Mortimer Rd	Residential	6,107	6,490	>50
R34	Aunger Rd N	Residential	811	1,218	>50
R35	236 Day Rd	Residential	1,623	2,485	>50
R36	334 Day Rd	Residential	2,499	3,321	>50
R37	206 Gregor Rd	Residential	3,223	3,631	>50
R38	513 Day Rd	Residential	4,304	5,178	>50
R39	560 Jenkin Rd	Residential	6,738	7,642	>50
R40	1,061 Germantown Rd	Residential	5,073	5,995	>50
R41	1,321 Germantown Rd	Residential	4,780	5,610	>50
R42	86 Hall Rd	Residential	4,634	5,183	>50
R43	70 Hall Rd	Residential	4,740	5,269	>50
R44	40 Hall Rd	Residential	4,871	5,406	>50
R45	26 Hall Rd	Residential	5,002	5,539	>50
R46	325 Hall Rd	Residential	3,794	4,622	>50
R47	715 Verner Rd	Residential	1,834	2,749	>50
R48	188 Cheek Rd	Residential	5,224	5,736	>50
R49	1,800 Redbanks Rd	Residential	1,206	1,744	>50
R50	1,561 Redbanks Rd	Residential	567	724	>50
R51	1806 Redbanks Rd	Residential	1,610	2,060	>50

With reference to **Table 10**, no sensitive receptors are identified as being within the screening distance associated with either the site boundary or site entrance criteria and therefore no further assessment of construction phase impacts is required.

In relation to the construction route (assumed to be from the Project site to Gawler along Gawler Road), one receptor (R31) is within the 50 m screening distance, although once the construction route enters Gawler itself, multiple properties would be within the 50 m screening distance. Further assessment is therefore required for impacts associated with construction traffic as summarised in **Table 11**.

Although impacts associated with earthworks, construction and track-out have been screened from further assessment, dust control measures will still be implemented at the Project site to ensure that offsite impacts are minimised and best practice is implemented. It is noted that the two small structures located to the northeast of the site would be demolished as part of the proposed scope of construction works.

Construction Impact	Screening Criteria	Step 1 Screening	Comments
Earthworks	350 m from boundary 500 m from site entrance	Screened	Receptors not identified within the screening distance
Construction	350 m from boundary 500 m from site entrance	Screened	
Track-out	100 m from site entrance	Screened	
Demolition	350 m from boundary 500 m from site entrance	Screened	
Construction Traffic	50 m from roadside	Not screened	Receptors identified within the screening distance

Table 11 Application of step 1 screening

5.1. Impact Magnitude

It may be anticipated that >50 heavy vehicle movements would be required each day to service the Project site during peak construction periods.

Based upon the above assumptions and the assessment criteria presented in **Appendix D**, the dust emission magnitudes are as presented in **Table 12**.

Table 12 Construction phase impact categorisation of dust emission magnitude

Activity	Dust Emission Magnitude	
Construction traffic routes	small	
Nate: Forthworks, construction and track, but have been acrossed from further according to (refer Table 11)		

Note: Earthworks, construction and track-out have been screened from further assessment (refer Table 11)

5.2. Sensitivity of an Area

5.2.1. Land Use Value

Based on the criteria listed in **Appendix D**, the land use value of the area surrounding the Project site is concluded to be high for health impacts and for dust soiling, based upon the following assumption:

• The receptor locations include residential properties where people may reasonably be expected to be present for eight to 24-hours.

Given that the highest sensitivity land uses would tend to define the level of control required to minimise impacts, it is considered that these sensitivity land uses are appropriately considered for both health and dust soiling effects. This value is used to derive *the sensitivity of the area*.

5.2.2. Sensitivity of an Area

Using the classifications shown in **Appendix D**, the sensitivity of the surrounding area to health effects and dust soiling may be identified.

The sensitivity of the area to dust soiling effects is assessed as being *low*.

The assumed existing background annual average PM_{10} concentrations (as measured at Elizabeth Downs in 2015) are reported in **Section 3.3**. The annual average PM_{10} concentration as measured at Elizabeth Downs in 2015 was 14.94 µg m⁻³, which provides the sensitivity of the area as *low* for dust health impacts.

5.3. Risk (Pre-Mitigation)

Given the sensitivity of the identified receptors is classified as 'low' for dust soiling, and 'low' for health effects, and the dust emission magnitudes for the various construction phase activities as shown in **Table 12**, the resulting risk of air quality impacts (without mitigation) is as presented in **Table 13**.

Table 13 Risk of air quality impacts from construction	activities
--	------------

Impact	Sensitivity of Area	Dust Emission Magnitude	Preliminary Risk
		Construction Traffic	Construction Traffic
Dust Soiling	low	small	negl
Human Health	low	small	negl

Note: Earthworks, construction and track-out have been screened from further assessment (refer Table 11)

The risks summarised in **Table 13** that there is a *negligible* risk of adverse dust soiling and human health impacts at all properties if no mitigation measures were to be applied to control emissions associated with construction traffic activities.

5.4. Identified Mitigation

 Table 14 lists the relevant mitigation measures identified, and have been presented as follows:

- **Not required** = not required (although they may be implemented voluntarily).
- **Desirable** = desirable (to be considered as part of the CEMP, but may be discounted if justification is provided).
- **Highly recommended** = highly recommended (to be implemented as part of the CEMP, and should only be discounted if site-specific conditions render the requirement invalid or otherwise undesirable).

The following is presented as *highly recommended* (H) or *desirable* (D) by the IAQM methodology for a *low* risk site for demolition, earthworks, construction and construction traffic. <u>A detailed review of the</u> recommendations would be performed once details of the construction phase are available.

Once again, it is noted that the impacts associated with earthworks, construction and track-out have been screened from the assessment based on the distances to each receptor (**Table 10**). However, dust mitigation measures for those activities associated with a *low* risk site are presented in **Table 14** as those measures would be the minimum which should be applied to ensure best practice dust control for the Project.

Table 14 Site-specific management measures

Identifie	d Mitigation	Unmitigated Risk
		Low
1	Communications	
1.1	Develop and implement a stakeholder communications plan that includes community engagement before work commences on site.	Highly recommended
1.1	Display the name and contact details of person(s) accountable for air quality and dust issues on the site boundary. This may be the environment manager/engineer or the site manager.	Highly recommended
1.2	Display the head or regional office contact information.	Highly recommended
1.3	Develop and implement a Dust Management Plan (DMP), which may include measures to control other emissions, approved by the relevant regulatory bodies.	Desirable
2	Site Management	
2.1	Record all dust and air quality complaints, identify cause(s), take appropriate measures to reduce emissions in a timely manner, and record the measures taken.	Highly recommended
2.2	Make the complaints log available to the local authority when asked.	Highly recommended

Identifie	d Mitigation	Unmitigated Risk
		Low
2.3	Record any exceptional incidents that cause dust and/or air emissions, either on- or offsite, and the action taken to resolve the situation in the log book.	Highly recommended
2.4	Hold regular liaison meetings with other high risk construction sites within 500 m of the site boundary, to ensure plans are coordinated and dust and particulate matter emissions are minimised. It is important to understand the interactions of the off-site transport/ deliveries which might be using the same strategic road network routes.	Not recommended
3	Monitoring	
3.1	Undertake daily on-site and off-site inspections where receptors (including roads) are nearby, to monitor dust, record inspection results, and make the log available to the local authority when asked. This should include regular dust soiling checks of surfaces such as street furniture, cars and window sills within 100m of site boundary.	Desirable
3.2	Carry out regular site inspections to monitor compliance with the DMP, record inspection results, and make an inspection log available to the local authority when asked.	Highly recommended
3.3	Increase the frequency of site inspections by the person accountable for air quality and dust issues on site when activities with a high potential to produce dust are being carried out and during prolonged dry or windy conditions.	Highly recommended
3.4	Agree dust deposition, dust flux, or real-time continuous monitoring locations with the relevant regulatory bodies. Where possible commence baseline monitoring at least three months before work commences on site or, if it a large site, before work on a phase commences.	Not recommended
4	Preparing and Maintaining the Site	
4.1	Plan site layout so that machinery and dust causing activities are located away from receptors, as far as is possible.	Highly recommended
4.2	Erect solid screens or barriers around dusty activities or the site boundary that they are at least as high as any stockpiles on site.	Highly recommended
4.3	Fully enclose site or specific operations where there is a high potential for dust production and the site is active for an extensive period.	Desirable
4.4	Avoid site runoff of water or mud.	Highly recommended
4.5	Keep site fencing, barriers and scaffolding clean using wet methods.	Desirable
4.6	Remove materials that have a potential to produce dust from site as soon as possible, unless being re-used on site. If they are being re-used on-site cover as described below	Desirable
4.7	Cover, seed or fence stockpiles to prevent wind erosion	Desirable

Identifie	ed Mitigation	Unmitigated Risk
		Low
5	Operating Vehicle/Machinery and Sustainable Travel	
5.1	Ensure all on-road vehicles comply with relevant vehicle emission standards, where applicable	Highly recommended
5.2	Ensure all vehicles switch off engines when stationary - no idling vehicles	Highly recommended
5.3	Avoid the use of diesel or petrol powered generators and use mains electricity or battery powered equipment where practicable	Highly recommended
5.4	Impose and signpost a maximum-speed-limit of 25 kmh on surfaced and 15 kmh on unsurfaced haul roads and work areas (if long haul routes are required these speeds may be increased with suitable additional control measures provided, subject to the approval of the nominated undertaker and with the agreement of the local authority, where appropriate	Desirable
5.5	Produce a Construction Logistics Plan to manage the sustainable delivery of goods and materials.	Not recommended
5.6	Implement a Travel Plan that supports and encourages sustainable travel (public transport, cycling, walking, and car-sharing)	Not recommended
6	Operations	
6.1	Only use cutting, grinding or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays or local extraction, e.g. suitable local exhaust ventilation systems	Highly recommended
6.2	Ensure an adequate water supply on the site for effective dust/particulate matter suppression/ mitigation, using non-potable water where possible and appropriate	Highly recommended
6.3	Use enclosed chutes and conveyors and covered skips (where relevant).	Highly recommended
6.4	Minimise drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use fine water sprays on such equipment wherever appropriate (where relevant).	Highly recommended
6.5	Ensure equipment is readily available on site to clean any dry spillages, and clean up spillages as soon as reasonably practicable after the event using wet cleaning methods.	Desirable
7	Waste Management	
7.1	Avoid bonfires and burning of waste materials.	Highly recommended
8	Measures Specific to Construction	
8.1	Avoid scabbling (roughening of concrete surfaces) if possible	Desirable
8.2	Ensure sand and other aggregates are stored in bunded areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place	Desirable

Identifi	ed Mitigation	Unmitigated Risk
		Low
8.3	Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored in silos with suitable emission control systems to prevent escape of material and overfilling during delivery.	Not recommended
8.4	For smaller supplies of fine power materials ensure bags are sealed after use and stored appropriately to prevent dust	Not recommended
9	Measures Specific to Track-Out	
9.1	Use water-assisted dust sweeper(s) on the access and local roads to remove, as necessary, any material tracked out of the site.	Desirable
9.2	Avoid dry sweeping of large areas.	Desirable
9.3	Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport.	Desirable
9.4	Inspect on-site haul routes for integrity and instigate necessary repairs to the surface as soon as reasonably practicable.	Highly recommended
9.5	Record all inspections of haul routes and any subsequent action in a site log book.	Desirable
9.6	Install hard surfaced haul routes, which are regularly damped down with fixed or mobile sprinkler systems, or mobile water bowsers and regularly cleaned.	Not recommended
9.7	Implement a wheel washing system (with rumble grids to dislodge accumulated dust and mud prior to leaving the site where reasonably practicable).	Desirable
9.8	Ensure there is an adequate area of hard surfaced road between the wheel wash facility and the site exit, wherever site size and layout permits.	Not recommended
9.9	Access gates to be located at least 10 m from receptors where possible.	Not recommended
10	Measures Specific to Construction Traffic (Adapted)	
10.1	Ensure all on-road vehicles comply with relevant vehicle emission standards, where applicable	Highly recommended
10.2	Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport.	Desirable
10.3	Inspect on-site haul routes for integrity and instigate necessary repairs to the surface as soon as reasonably practicable.	Highly recommended
10.4	Record all inspections of haul routes and any subsequent action in a site log book.	Desirable
Notes	D = desirable (to be considered), H = highly recommended (to be implemented), N = not req voluntarily implemented)	uired (although can be

voluntarily implemented)

5.5. Risk (Post-Mitigation)

For almost all construction activity, the adapted methodology notes that the aim should be to prevent significant effects on receptors through the use of effective mitigation and experience shows that this is normally possible.

Given the limited size of the Project site, residual impacts associated with fugitive dust emissions from the Project would be anticipated to remain to be '*not significant*'.

Page left intentionally blank

6. OPERATIONAL PHASE IMPACT ASSESSMENT

The methodology used to assess impacts resulting from the power station operation at the various operational loads is discussed in **Section 4.2**. This section presents the results of the dispersion modelling assessment and uses the following terminology:

- Incremental impact relates to the concentrations predicted as a result of the operation of the power station in isolation.
- Cumulative impact relates to the concentrations predicted as a result of the operation of the power station plus the background air quality concentrations discussed in **Section 3.3**.

The results are presented in this manner to allow examination of the likely impact of the power station in isolation and the contribution to air quality impacts in a broader sense. Detailed results schedules and isopleth plots of predicted incremental impacts are presented in **Appendix E**.

6.1. Predicted Incremental Operational Impacts

6.1.1. Operating on Gas

Table 15 presents a summary of the predicted incremental ground level concentrations (GLC) of the operationof the turbines operating on gas at various loads. For clarity, **Table 15** presents the <u>maximum</u> predictedincremental impact at any of the identified receptors.

				g			
Pollutant	Averaging Period	100% load, gas	75% load, gas	50% load, gas	25% load, gas		
СО	µg·m⁻³ 1-hour	37.47	32.18	25.81	24.76		
	µg·m⁻³ 8-hour	13.19	14.80	14.12	14.65		
NO_{X} as NO_{2}	µg·m⁻³ 1-hour	61.49	52.81	42.35	40.64		
	µg·m⁻³ annual	0.53	0.50	0.43	0.41		
PM ₁₀ / PM _{2.5}	µg·m⁻³ 24-hour	0.81	1.12	1.37	1.98		
	µg·m⁻³ annual	0.06	0.07	0.07	0.08		
SO ₂	µg·m⁻³ 1-hour	9.83	8.46	6.83	6.51		
	µg·m⁻³ 24-hour	1.18	1.13	1.28	1.53		
	µg·m⁻³ annual	0.08	0.08	0.07	0.07		
Formaldehyde	µg·m⁻³ 1-hour	0.61	2.25	1.79	1.52		
	µg·m⁻³ 3-min	1.11	4.09	3.26	2.76		

 Table 15
 Predicted maximum incremental GLC (all receptors) – gas

The incremental impacts presented in **Table 15** do not include a contribution from background sources (as presented in **Section 3.3.3** and **Table 3**), however, it is noted that there are no incremental exceedances of the Air EPP standards, as presented in **Table 1**.

08000 Color northstar

6.1.2. Operating on Diesel

Table 16 presents a summary of the predicted incremental ground level concentrations (GLC) of the operationof the turbines operating on various diesel loads. For clarity, Table 15 presents the maximum predictedincremental impact at any of the identified receptors.

Table 16 Predicted maximum incremental GLC (all receptors) – diesei								
Pollutant	Averaging Period	100% load, diesel	75% load, diesel	50% load, diesel	25% load, diesel			
СО	µg·m⁻³ 1-hour	34.27	29.37	27.04	23.74			
	µg·m⁻³ 8-hour	13.76	14.27	13.73	14.46			
NO _x as NO ₂	µg·m⁻³ 1-hour	191.47	163.97	151.07	132.57			
	µg·m⁻³ annual	1.74	1.59	1.49	1.37			
PM ₁₀ / PM _{2.5}	µg·m⁻³ 24-hour	0.95	1.19	1.25	2.17			
	µg·m⁻³ annual	0.06	0.07	0.07	0.09			
SO ₂	µg·m⁻³ 1-hour	0.86	0.73	0.69	0.60			
	µg·m⁻³ 24-hour	0.12	0.12	0.12	0.16			
	µg·m⁻³ annual	0.01	0.01	0.01	0.01			
Formaldehyde	µg·m⁻³ 1-hour	0.12	0.1	0.11	0.11			
	µg·m⁻³ 3-min	0.21	0.19	0.2	0.21			

Table 16 Predicted maximum incremental GLC (all receptors) – diesel

The incremental impacts presented in **Table 16** do not include a contribution from background sources (as presented in **Section 3.3.3** and **Table 3**), however, it is noted that there are no incremental exceedances of the Air EPP standards, as presented in **Table 1**.

6.2. Predicted Cumulative Operational Impacts

The following represents the worst-case assessment of cumulative impacts, determined as:

cumulative impact = incremental impact + background (BG)

6.2.1. Operating on Gas

 Table 15 presents a summary of the predicted <u>cumulative</u> ground level concentrations (GLC) of the turbines operating on gas at various loads.

Detailed results schedules (of incremental impacts) are presented in **Appendix E** and summarised in **Table 15**, and background data is presented in **Section 3.3** and **Appendix B**.

The impact assessment criteria used in the AQIA are presented in Section 1.3

Pollutant	Averaging	BG	100% load,	75% load,	50% load,	25% load,	Criterion
	Period		gas	gas	gas	gas	(µg·m⁻³)
СО	µg·m⁻³ 1-hour	40	77.47	72.18	65.81	64.76	31,240
	µg·m⁻³ 8-hour	50	63.19	64.8	64.12	64.65	11,120
NO_{χ} as NO_{2}	µg·m⁻³ 1-hour	20.5	81.99	73.31	62.85	61.14	250
	µg·m⁻³ annual	8.2	8.73	8.7	8.63	8.61	60
PM ₁₀	µg·m⁻³ 24-hour	15.7	16.51	16.82	17.07	17.68	50
PM ₁₀ / PM _{2.5}	µg·m⁻³ 24-hour	10.4	11.21	11.52	11.77	12.38	25
	µg·m⁻³ annual	7.3	7.36	7.37	7.37	7.38	8
SO ₂	µg·m⁻³ 1-hour	28.6	38.43	37.06	35.43	35.11	570
	µg·m⁻³ 24-hour	5.8	6.98	6.93	7.08	7.33	230
	µg·m⁻³ annual	0.2	0.28	0.28	0.27	0.27	60
Formaldehyde	µg·m⁻³ 1-hour	0.0	0.61	2.25	1.79	1.52	n/a
	µg∙m⁻³ 3-min	0.0	1.11	4.09	3.26	2.76	44

Table 17Predicted maximum cumulative impacts – gas

Note: Exceedance of the relevant criterion is highlighted in **bold red text**

The cumulative impacts presented in **Table 17** include a contribution from background sources (as presented in **Section 3.3.3** and **Table 3**). There are no predicted exceedances of the Air EPP standards, as presented in **Table 1**.

6.2.2. Operating on Diesel

 Table 16 presents a summary of the predicted <u>cumulative</u> ground level concentrations (GLC) of the turbines operating on diesel at various loads.

Detailed results schedules (of incremental impacts) are presented in **Appendix E** and summarised in **Table 16**, and background data is presented in **Section 3.3** and **Appendix B**.

The impact assessment criteria used in the AQIA are presented in Section 1.3.

Pollutant	Averaging	BG	100% load,	75% load,	50% load,	25% load,	Criterion
	Period		diesel	diesel	diesel	diesel	(µg·m⁻³)
СО	µg·m⁻³ 1-hour	40	74.27	69.37	67.04	63.74	31,240
	µg·m⁻³ 8-hour	50	63.76	64.27	63.73	64.46	11,120
NO_{χ} as NO_{2}	µg·m⁻³ 1-hour	20.5	211.97	184.47	171.57	153.07	250
	µg·m⁻³ annual	8.2	9.94	9.79	9.69	9.57	60
PM ₁₀	µg·m⁻³ 24-hour	15.7	16.65	16.89	16.95	17.87	50
PM _{2.5}	µg·m⁻³ 24-hour	10.4	11.35	11.59	11.65	12.57	25
	µg·m⁻³ annual	7.3	7.36	7.37	7.37	7.39	8
SO ₂	µg·m⁻³ 1-hour	28.6	29.46	29.33	29.29	29.2	570
	µg·m⁻³ 24-hour	5.8	5.92	5.92	5.92	5.96	230
	µg·m⁻³ annual	0.2	0.21	0.21	0.21	0.21	60
Formaldehyde	µg·m⁻³ 1-hour	0.0	0.12	0.1	0.11	0.11	n/a
	µg∙m⁻³ 3-min	0.0	0.21	0.19	0.2	0.21	44

 Table 18
 Predicted maximum incremental impacts – diesel

Note: Exceedance of the relevant criterion is highlighted in **bold red text**

The cumulative impacts presented in **Table 18** include a contribution from background sources (as presented in **Section 3.3.3** and **Table 3**). There are no predicted exceedances of the Air EPP standards, as presented in **Table 1**.

6.3. **Predicted Start-Up Impacts**

The predicted start up impacts have been assessed as described in Section 4.2.3.

Using the data presented in Figure 11 and Table 8, the predicted short-term effect of start-up emissions of CO and NO_x (as NO_2) may be assessed using a time weighted averaging methodology:

$$SER_{p,60} = \frac{10(F_p \times ER_p) + 50(ER_p)}{60}$$

Where

 $SER_{p,60}$ = time-weighted start-up emission rate for pollutant p over 60-mins

= start-up weighting factor for pollutant p F_p

= emission rate for pollutant p ER_p

Table 19	Table 19 Predicted maximum start-up impacts (all receptors) – gas and diesel							
Pollutant		BG	Increment	Fp	TWA Start Up Impact	Start Up Impact	Criterion (µg·m⁻³)	
Gas								
CO µg·m⁻³1-h	nour	40	37.47 at 100% load	25.12	$40 + \left(\frac{10(25.12 \times 37.47) + 50(1 \times 37.47)}{60}\right)$	228.1	31,240	
NO _x as N µg·m⁻³ 1-ł	-	20.5	61.49 at 100% load	2.07	$20.5 + \left(\frac{10(2.07 \times 61.49) + 50(1 \times 61.49)}{60}\right)$	93.0 (NO _x)	250 (NO ₂)	
Diesel								
CO µg·m⁻³1-h	nour	40	34.27 at 100% load	25.12	$40 + \left(\frac{10(25.12 \times 34.27) + 50(1 \times 34.27)}{60}\right)$	212.0	31,240	
NO _x as N µg·m⁻³ 1-ł	2	20.5	191.47 at 100% load	2.07	$20.5 + \left(\frac{10(2.07 \times 191.47) + 50(1 \times 191.47)}{60}\right)$	246.1 (NO _x)	250 (NO ₂)	

... . */* 11

Note: Exceedance of the relevant criterion is highlighted in **bold red text**

The cumulative impacts presented in Table 19 include a contribution from background sources (as presented in Section 3.3.3 and Table 3), and are time weighted by the start-up weighting factors discussed in Section 4.2.3 and presented in Table 8.

There are no predicted exceedances of the Air EPP standards, as presented in Table 1.

As a conservative measure, the maximum ratio of measured 1-minute start up emissions to steady operational emissions has been assumed, and applied to the entire 10-minute start-up period.

Further conservatism assumes that 100% of all emitted NO_x is NO_2 , which is a highly conservative assumption.

Page left intentionally blank

7. DISCUSSION

Arcadis Australia Pacific Pty Ltd has engaged Northstar Air Quality Pty Ltd to perform an assessment of the potential impacts upon air quality associated with the construction and operation of the Reeves Plains Power Station, South Australia.

7.1. Construction Phase Air Quality Impacts

Construction phase activities have the potential to generate short-term emissions of particulates. Generally, these are associated with uncontrolled dust emissions and are typically experienced by neighbours as amenity impacts, such as dust deposition and visible dust plumes, rather than associated with health-related impacts.

The construction phase impacts associated with the Project have been assessed using a risk-based assessment procedure. The advantage of this approach is that it determines the activities that pose the greatest risk, which allows the Construction Environmental Management Plan (CEMP) to focus controls to manage that risk appropriately, and reduce the impact through proactive management. For this risk assessment, Northstar has adapted a methodology presented in the *IAQM Guidance on the Assessment of Dust from Demolition and Construction*.

The risk assessment determined that the land use value (predominantly residential properties) was *high*, and taken in conjunction with the existing low background particulate concentrations the sensitivity of the area was *low*.

Given the nature, scale and location of the construction activities, the potential magnitude of impacts was assessed as being *negligible* (screened out) for earthworks, construction and dirt track-out onto Gawler Road, and *small* for the potential magnitude of impacts from construction traffic. Based upon the above, the risk from construction traffic was assessed as being *negligible*.

However, a range of construction mitigation measures have been proposed to ensure that off-site impacts are maintained at a level that would not give rise to complaints, and representative of effective and proper dust control. It is recommended that these are incorporated into a dust action plan as part of the Construction Environmental Management Plan (CEMP).

7.2. Operational Phase Air Quality Impacts

The operational phase air quality assessment has been performed using a dispersion modelling study, conducted in general accordance with Environment Protection Authority (2016) Ambient Air Quality Assessment⁷ guidelines.

The impact assessment has used technical specifications provided by the proponent for the open cycle GE LM6000 Sprint® gas turbines. The primary focus is the assessment of emissions from the operation of the 6 turbines operating on natural gas as a peaking plant. In the event that the gas supply is unexpectedly interrupted, the turbines are specified so that they are able to operate using diesel as the fuel, and this AQIA has considered those emissions also.

The dispersion modelling has been performed using the CSIRO TAPM and the USEPA AERMOD models, and using multiple year meteorological data, validated against meteorological data measured by the Australian Bureau of Meteorology automatic weather stations at RAAF Edinburgh and Outer Harbour. Overall, **Appendix A** shows that the site-specific meteorological data used in this air quality impact assessment validates well.

To understand the existing conditions at the site, measured air pollutant concentration data measured by the Environment Protection Authority at Elizabeth Downs, Adelaide Northfield and Netley have been used. The measured data and the methodology used to use that data in the air quality impact assessment has been documented in **Appendix B**.

The emission estimations for the six turbines operating concurrently with (a) gas and (b) diesel has been assessed at various operating loads are outlined in **Appendix C**, and are discussed in **Section 4.2**. Further to this, the short-term emissions associated with start-up and shut-down have also been assessed, as the six turbines simultaneously warming through the start-up cycle to the point at which peak emission rates are achieved has also been assessed.

The emission estimations of the above, considers potential emissions of:

- carbon monoxide (CO);
- oxides of nitrogen (NO_X as NO_2)
- particulate matter (PM_{2.5})
- sulphur dioxide (SO₂)
- hazardous air pollutants, assessed as formaldehyde (CH₂O),

The above pollutants have been assessed for the six (6) turbines operating concurrently using:

- natural gas
- diesel

The emissions have been assessed for operations at:

• normal operating load (100%)

- normal operating load (75%)
- normal operating load (50%) normal operating load (25%)
- start up (idling to normal operating loads).

The predicted impacts have been predicted at 51 discrete receptor locations, as well as at a series of 25 m uniform receptors across the modelling domain which covers an area of 20 km by 20 km.

The results of the dispersion modelling assessment and have been presented as:

- Incremental impacts relating to the concentrations predicted as a result of the operation of the power station in isolation.
- Cumulative impacts relating to the concentrations predicted as a result of the operation of the power station plus the background air quality concentrations discussed in **Section 3.3**.

The results of the dispersion modelling, performed using a meteorological period from January-December 2015 are presented in **Appendix E** and summarised in **Section 6.2**.

7.2.1. Operating on Gas

 Table 20 presents a summary of the assumed background, maximum increment (of any receptor at any load operating on gas), and presents those values as a percentage of the standards applied to this AQIA (Table 1).

	Summary of impacts (gas) and comparison against Air LFF							
Pollutant	Units / Ave	Back-	Maximum	Air EPP	% o	f Air EPP Stanc	lard	
(Gas)		ground	Increment		Back-	Maximum	Cumu-	
					ground	Increment	lative	
СО	µg·m⁻³ 1-hour	40	37.47	31,240	0.13%	0.12%	0.25%	
	µg·m⁻³ 8-hour	50	14.8	11,120	0.45%	0.13%	0.58%	
$NO_{\rm X}$ as	µg·m⁻³ 1-hour	20.5	61.49	250	8.20%	24.60%	32.80%	
NO ₂	µg·m⁻³ annual	8.2	0.53	60	13.67%	0.88%	14.55%	
PM ₁₀	µg·m⁻³ 24-hour	15.7	1.98	50	31.40%	3.96%	35.36%	
PM _{2.5}	µg·m⁻³ 24-hour	10.4	1.98	25	41.60%	7.92%	49.52%	
	µg·m⁻³ annual	7.3	0.08	8	91.25%	1.00%	92.25%	
SO ₂	µg·m⁻³ 1-hour	28.6	9.83	570	5.02%	1.72%	6.74%	
	µg·m⁻³ 24-hour	5.8	1.53	230	2.52%	0.67%	3.19%	
	µg·m⁻³ annual	0.2	0.08	60	0.33%	0.13%	0.47%	
CH ₂ O	µg·m⁻³ 1-hour	0	2.25	n/a	n/a	n/a	n/a	
	µg·m⁻³ 3-min	0	4.09	44	0.00%	9.30%	9.30%	

Table 20 Summary of impacts (gas) and comparison against Air EPP

Note: Exceedence of the relevant criterion is highlighted in **bold red text**

⁷ http://www.epa.sa.gov.au/environmental_info/air_quality/assistance_and_advice

Table 20 demonstrates that none of the discrete or cumulative impacts exceed the Air EPP standards. The maximum *incremental* impact may be seen to be 1-hour NO_x as NO_2 , which is estimated to represent 24.6% of the 250 μ g·m⁻³ 1-hour standard. It is noted that this assessment has assumed a conservative 100% conversion from NO_x to NO_2 , and as such the above evaluation may be seen as being highly conservative.

The most significant *cumulative* impacts (expressed as a fractions of the Air EPP standard) may be seen to be associated with the annual average $PM_{2.5}$ standard, but it may be seen that these are significantly driven by high background contributions with the associated increment being only 1% of the Air EPP standard.

7.2.2. Operating on Diesel

Table 21 presents a summary of the assumed background, maximum increment (of any receptor at any load operating on diesel), and presents those values as a percentage of the Air EPP standard (or standard applied to this AQIA).

Pollutant	Units / Ave	Back-	Maximum	Air EPP	% o	f Air EPP Stand	lard
(Diesel)		ground	Increment		Back-	Maximum	Cumu-
					ground	Increment	lative
СО	µg·m⁻³ 1-hour	40	34.27	31,240	0.13%	0.11%	0.24%
	µg·m⁻³ 8-hour	50	14.46	11,120	0.45%	0.13%	0.58%
NO _x as	µg·m⁻³ 1-hour	20.5	191.47	250	8.20%	76.59%	84.79%
NO ₂	µg·m⁻³ annual	8.2	1.74	60	13.67%	2.90%	16.57%
PM ₁₀	µg·m⁻³ 24-hour	15.7	2.17	50	31.40%	4.34%	35.74%
PM _{2.5}	µg·m⁻³ 24-hour	10.4	2.17	25	41.60%	8.68%	50.28%
	µg·m⁻³ annual	7.3	0.09	8	91.25%	1.13%	92.38%
SO ₂	µg·m⁻³ 1-hour	28.6	0.86	570	5.02%	0.15%	5.17%
	µg·m⁻³ 24-hour	5.8	0.16	230	2.52%	0.07%	2.59%
	µg·m⁻³ annual	0.2	0.01	60	0.33%	0.02%	0.35%
CH ₂ O	µg·m⁻³ 1-hour	0	0.12	n/a	n/a	n/a	n/a
	µg·m⁻³ 3-min	0	0.21	44	0.00%	0.48%	0.48%

 Table 21
 Summary of impacts (diesel) and comparison against Air EPP

Note: Exceedence of the relevant criterion is highlighted in **bold red text**

Table 21 demonstrates that none of the discrete or cumulative impacts exceed the Air EPP standards. The maximum *incremental* impact may be seen to be 1-hour NO_X as NO₂, at 76.6% of the 250 μ g·m⁻³ 1-hour standard. As noted above, this assessment has assumed a conservative 100% conversion from NO_X to NO₂, and as such the above evaluation may be seen as being highly conservative.

The most significant *cumulative* impacts (as factions of the Air EPP standard) may be seen to be associated with the 1-hour NO_x as NO_2 , and the annual average $PM_{2.5}$ standards, but none are predicted to exceed the Air EPP standards.

7.2.3. Start Up Emissions

The conservative assessment of start-up impacts assumes that the maximum peak in emissions, relative to normal operations measured at the comparable Bairnsdale Power Station is applied to the entire 10-minute start-up cycle. It further assumes that 100% of NO_x is emitted as NO_2 , which is highly conservative.

The start-up emissions are not predicted to exceed the Air EPP standards.

7.3. Conclusions

Based upon the information and assumptions presented in this AQIA, it is concluded that construction dust emissions may be adequately controlled through the application of a range of suitable construction management practices, and that these should be documented within a Construction Environmental Management Plan (CEMP).

The potential impacts from the operation of the proposed power station have been assessed using a referenced dispersion modelling assessment, using meteorological data as requested by the EPA, representative background monitoring and using emission rates derived directly from Alinta Energy. Based upon the assumptions presented in the AQIA it is predicted that the operation of the power station on either gas or mineral diesel will not result in a breach of the standards prescribed in the Air EPP.

Notwithstanding the foregoing assessment, it is recommended that a suitable campaign of compliance monitoring should be implemented to the satisfaction of the EPA. It is considered that the demonstration that the engines are capable of being operated as set out in this AQIA is of critical importance, and that a program of emissions testing with the engines operating on gas and diesel and at various loads should be implemented as a condition of approval.

Whilst the AQIA predicts that the air quality risks associated with operation at full capacity (300 MW) are within acceptable limits, it is considered that the environmental risks are further managed by the proposed staged development. Implementing the recommended program of compliance emissions monitoring during the initial stage (150 MW installed capacity) would provide the EPA with increased assurance that the proposed plant is able to achieve its performance objectives prior to operating the second stage (300 MW installed capacity).

In light of the above, and in consideration of the proposed verification studies, it is considered to be reasonable to conclude that the proposed construction and operation of the Project should not be refused on grounds of air quality.

Page left intentionally blank

8. **REFERENCES**

Environment Protection Authority (2016) Ambient Air Quality Assessment (EPA 2016)

Environment Protection (Air Quality) Policy 2016 (Air EPP)

Environment Protection Authority (2016) Ambient Air Quality Assessment (EPA, 2016)

GE Energy (2008) LM6000-50/60 Hz Gas Turbine Generator Set Product Specification (GE Energy 2008),

Institute of Air Quality Management (2014) *Guidance on the Assessment of Dust from Demolition and Construction* (IAQM 2014)

US EPA (1995) *Compilation of Air Pollutant Emission Factors AP-42, Volume 1, Chapter 3: Stationary Internal Combustion Sources (fifth edition)* (USEPA 1995)

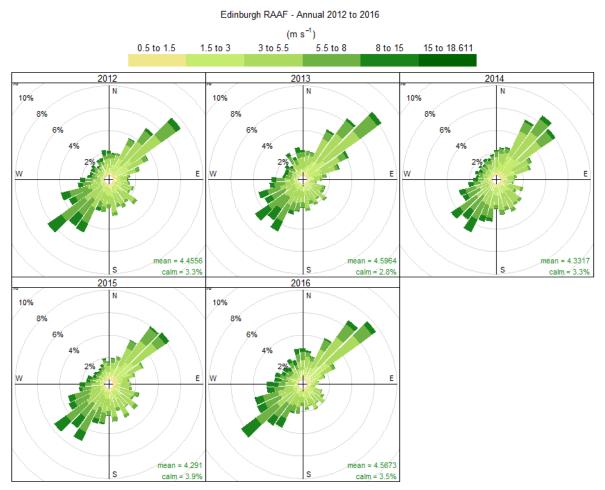
Page left intentionally blank

APPENDIX A

METEOROLOGY

As discussed in **Section 3.4** a meteorological modelling exercise has been performed to characterise the meteorology of the Project site in the absence of site specific measurements. The meteorological monitoring has been based on measurements taken at a number of surrounding automatic weather stations (AWS) operated by the Bureau of Meteorology (BoM). A summary of the relevant monitoring sites is provided in **Table A-1**.

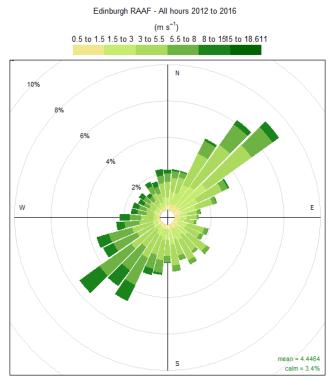
Table A-1 Details of the Meteorological Monitoring Surrounding the Project Site


Site Name	Approximate Location (Latitude, Longitude)		
	°S	°Е	
Edinburgh RAAF – Station # 023083	34.71	138.62	
Outer Harbour – Station # 023052	34.73	138.47	

Meteorological conditions at Edinburgh RAAF AWS have been examined to determine a 'typical' or representative dataset for use in dispersion modelling.

Annual wind roses for the most recent years of data measured at Edinburgh RAAF AWS over the period from 2012 to 2016 are presented in **Figure A-1**.

Figure A-1 Annual wind roses 2012 to 2016, Edinburgh RAAF AWS


Frequency of counts by wind direction (%)

Source: Northstar Air Quality

The wind roses indicate that from 2012 to 2016, winds at Edinburgh RAAF AWS show a predominant southwesterly wind direction with a north-easterly and south-easterly components also evident. The majority of wind speeds experienced at the Edinburgh RAAF AWS between 2012 and 2016 are generally in the range 1.5 metres per second ($m \cdot s^{-1}$) to 5.5 $m \cdot s^{-1}$ with the highest wind speeds (greater than 8 $m \cdot s^{-1}$) occurring from a south easterly direction. Winds of this speed are rare and occur during 1.1% of the observed hours during the years. Calm winds (<0.5 $m \cdot s^{-1}$) occur for less than 3.7% of hours across the years.

Presented in **Figure A-2** is the long-term wind rose for the 2012 to 2016 period and the annual wind speed distribution for Edinburgh RAAF AWS.

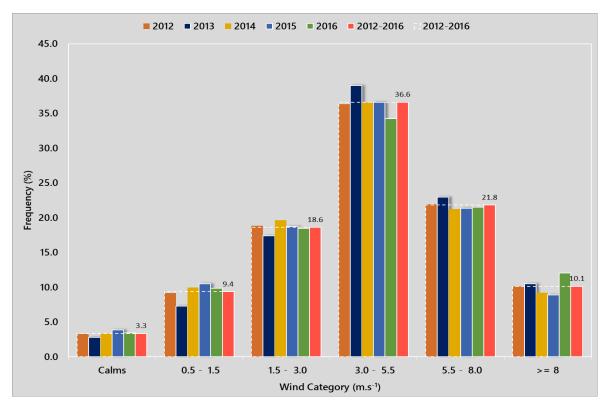


Figure A-2 Long-term wind rose (2012 to 2016), Edinburgh RAAF AWS

Frequency of counts by wind direction (%)

Source: Northstar Air Quality

Source: Northstar Air Quality

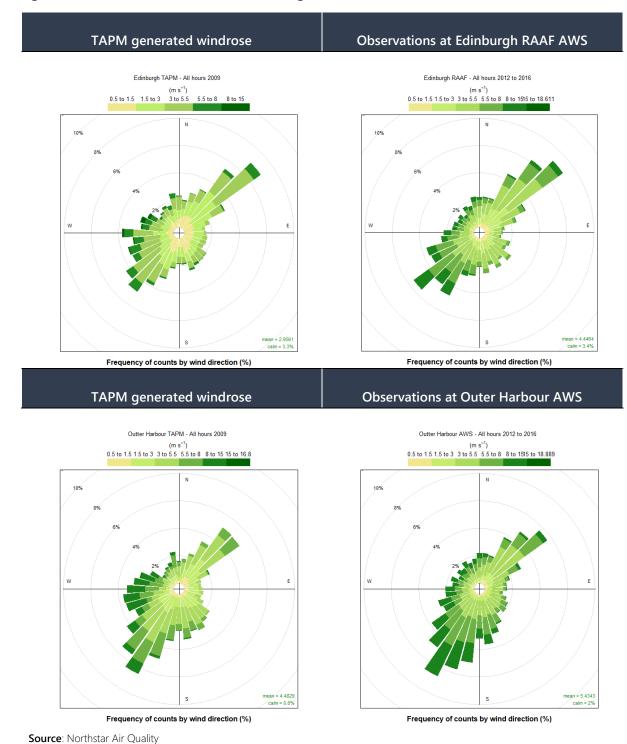
Meteorological Processing

The BoM data adequately covers the issues of data quality assurance, however it is limited by its location compared to the Project site. To address these uncertainties, a multi-phased assessment of the meteorology data has been performed.

In absence of any measured onsite meteorological data, site representative meteorological data for this Project was generated using the TAPM meteorological model (refer **Section 4.2**).

Meteorological modelling using The Air Pollution Model (TAPM, v 4.0.5) has been performed to predict the meteorological parameters required for AERMOD. TAPM, developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) is a prognostic model which may be used to predict three-dimensional meteorological data and air pollution concentrations.

TAPM predicts wind speed and direction, temperature, pressure, water vapour, cloud, rain water and turbulence. The program allows the user to generate synthetic observations by referencing databases (covering terrain, vegetation and soil type, sea surface temperature and synoptic scale meteorological analyses) which are subsequently used in the model input to generate site-specific hourly meteorological observations at user-defined levels within the atmosphere.


The parameters used in TAPM modelling are presented in Table A-2.

TAPM v 4.0.5					
Modelling period	1 January 2009 to 31 December 2009				
Centre of analysis	280,713 mE, 6179,316 mN (UTM Coordinates)				
Number of grid points	70 × 70 × 25				
Number of grids (spacing)	4 (20 km, 10 km, 3 km, 1 km)				
Terrain	AUSLIG 9 second DEM				
Data assimilation	None				

Table A-2 Meteorological Parameters used for this Study

A comparison of the TAPM generated meteorological data, and that observed at the Edinburgh RAAF AWS is presented in **Figure A-4**. These data generally compare well which provides confidence that the meteorological conditions modelled as part of this assessment are appropriate.

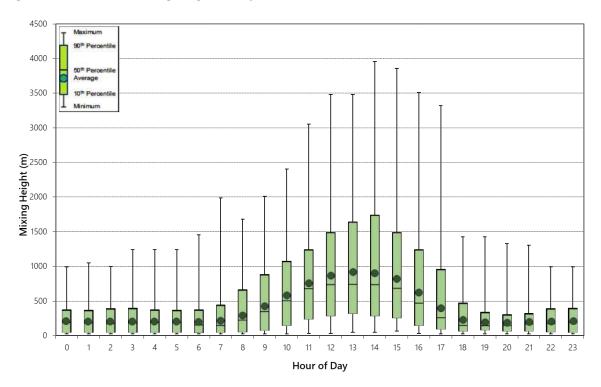
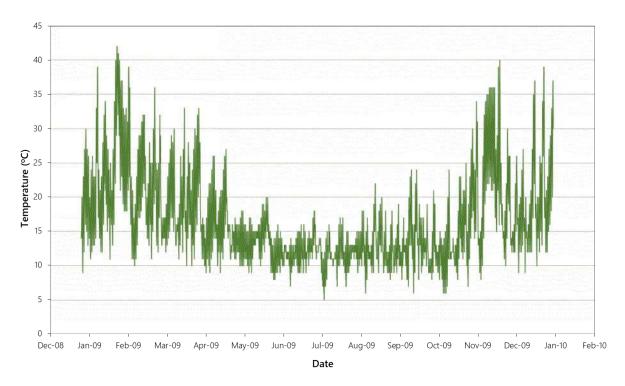


Figure A-4 Modelled and observed meteorological data –2009, 2012-2016

The following provides a summary of the modelled meteorological dataset. Given the nature of the pollutant emission sources at the Project site, detailed discussion of the humidity, evaporation, cloud cover, katabatic air drainage and air recirulation potential of the Project site has not been provided. Details of the predictions of wind speed and direction, mixing height and temperature at the Project site are provided below.

Diurnal variations in maximum and average mixing heights predicted by TAPM at the Project site during 2009 period are illustrated in **Figure A-5**.

As expected, an increase in mixing height during the morning is apparent, arising due to the onset of vertical mixing following sunrise. Maximum mixing heights occur in the mid to late afternoon, due to the dissipation of ground based temperature inversions and growth of the convective mixing layer.


Figure A-5 Predicted mixing height – Project site 2009

Source: Northstar Air Quality

The modelled temperature variations predicted at the Project site during 2009 are presented in **Figure A-6**. The maximum temperature of 42°C was predicted on 9 January 2009 and the minimum temperature of 5°C was predicted on 7 July 2009.

Source: Northstar Air Quality

The modelled wind speed and direction at the Project site during 2009 are presented in Figure A-7.

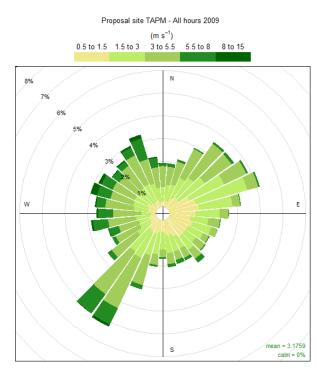


Figure A-7 Predicted wind speed and direction – Project site 2009

Frequency of counts by wind direction (%)

Source: Northstar Air Quality

APPENDIX B

BACKGROUND AIR QUALITY

Background air quality assumptions are introduced in **Section 3.3** of the AQIA. The data presented below presents a summary of the measured air quality concentrations at Elizabeth Downs air quality monitoring station (AQMS) and at Netley AQMS during 2015. The data has been accessed and the summary statistics derived from the Data SA website, maintained by the SA Government.

Elizabeth Downs AQMS has been used to represent background air quality at the Project site as it is the closest monitoring station. The EPA raised questions about the applicability of particulate data at Elizabeth Downs AQMS, and recommended that Netley AQMS was used instead to characterise background particulate concentrations.

The data accessed from the Data SA web resource⁸ was downloaded and is summarised in **Table B-1** below:

⁸ https://data.sa.gov.au/

Polltnt:	PN	И ₁₀	PM _{2.5}	NO	NO ₂	NO _X	C	0
Average Period	24-h all	24-h Air EPP ^D	24-h all	1-h	1-h	1-h	1-h	8-h
AQMS	Netley	Netley	Netley	Eliz	zabeth Dow	/ns	Elizabetl	n Downs
Units ^A	µg.m ⁻³ _{TEOM}	µg.m ⁻³ _{TEOM}	µg.m ⁻³ _{TEOM}	ppm	ppm	ppm	ppm	ppm
Mean	15.7	15.5	7.3	0.001	0.004	0.005	0.022	0.022
Std Deviation	7.5	6.1	2.5	0.002	0.004	0.006	0.072	0.051
Skew ^B	4.2	1.0	1.2	8.5	2.1	3.3	16.4	9.7
Kurtosis ^c	41.2	1.2	2.1	112.3	5.2	16.8	411.6	137.7
Minimum	1.4	1.4	1.8	-0.001	-0.001	-0.001	-0.040	-0.040
Percentile 1	5.4	5.4	3.4	0.000	0.000	0.000	-0.020	-0.020
Percentile 2	6.2	6.2	3.7	0.000	0.000	0.000	-0.020	-0.010
Percentile 3	6.8	6.8	3.8	0.000	0.000	0.000	-0.020	-0.010
Percentile 4	7.4	7.4	3.9	0.000	0.000	0.000	-0.010	-0.010
Percentile 5	7.8	7.7	4.0	0.000	0.000	0.000	-0.010	-0.010
Percentile 10	9.2	9.2	4.6	0.000	0.001	0.001	0.000	0.000
Percentile 25	11.1	11.1	5.5	0.000	0.001	0.002	0.000	0.000
Percentile 50	14.8	14.8	6.9	0.000	0.003	0.003	0.010	0.010
Percentile 75	18.2	18.1	8.4	0.001	0.005	0.006	0.020	0.020
Percentile 90	23.8	23.7	10.4	0.002	0.010	0.011	0.040	0.050
Percentile 95	28.1	28.0	11.8	0.003	0.013	0.016	0.080	0.080
Percentile 96	29.2	28.8	12.3	0.004	0.014	0.017	0.100	0.090
Percentile 97	30.2	30.1	13.5	0.005	0.016	0.020	0.130	0.110
Percentile 98	31.2	30.6	15.1	0.007	0.017	0.023	0.160	0.130
Percentile 99	35.1	34.8	15.9	0.011	0.020	0.030	0.240	0.170
Maximum	98.7	39.6	17.1	0.056	0.028	0.079	2.580	0.980
Count	365	364	345	8,337	8,337	8,337	8,528	8,561
Capture	100%	99.7%	95%	95%	95%	95%	97%	98%

Table B-1 Summary background air quality data (Elizabeth Downs & Netley AQMS, 2015)

Note: A. All data is presented in the stated units except skew and kurtosis, which are dimensionless, count which is a numerical value and capture which is expressed as a percentage.

B. Skew is a dimensionless metric describing the distribution of the measured values in the range to a normal distribution.

C. Kurtosis is a dimensionless metric describing the 'peakedness' of the distribution to a normal distribution.

D. Data presented excluding the maximum measured value of 98.7 µg·m⁻³.

The data accessed for Elizabeth Downs AQMS and Netley AQMS did not contain measured SO₂ data.

Particulates (as PM₁₀)

The data for PM_{10} measured at Netley AQMS during 2015 is presented as measured 24-hour average data. It may be seen that the 24-hour PM₁₀ concentration exceeds the Air EPP 24-hour criterion of 50 μ g·m⁻³ on one occasion during 2015.

The time-series plot for the measured 24-hour PM₁₀ concentration is illustrated in Figure B-1.

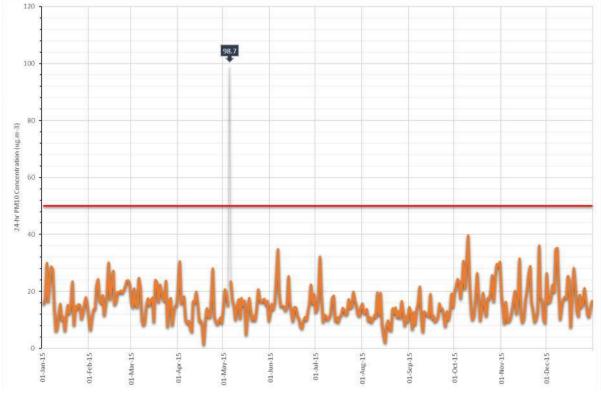
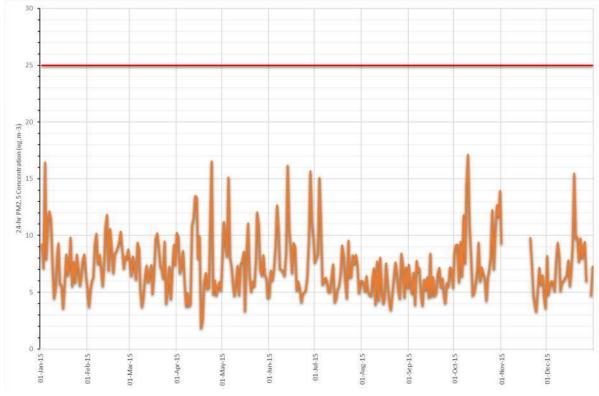


Figure B-1 Time series plot of measured 24-hour PM₁₀ (Netley AQMS 2015)


Source: Northstar Air Quality

The single exceedences of the Air EPP 24-hour PM_{10} criterion of 50 μ g·m⁻³ is indicated as 98.7 μ g·m⁻³ on 4 May 2015. To use this data meaningfully, the period of exceedence of the Air EPP standard has been removed and the resultant dataset recalculated (listed in the table as "24-h Air EPP").

Consequentially, the maximum background 24-hour PM_{10} concentration value for 2015 is 39.6 μ g·m⁻³ with an annual average PM_{10} concentration of 15.7 μ g·m⁻³. The 90th percentile of 24-hour PM_{10} measured at Netley AQMS is 23.8 μ g·m⁻³, including the Air EPP exceedance value in that calculation.

Particulates (as PM_{2.5})

The corresponding background $PM_{2.5}$ measurements at Netley AQMS in 2015 are presented in **Figure B-2** below:

Figure B-2 Time series plot of measured 24-hour PM_{2.5} (Netley AQMS 2015)

There are no exceedences of the Air EPP 24-hour $PM_{2.5}$ criterion of 25 μ g·m⁻³ measured at Netley AQMS is 2015.

The maximum background 24-hour $PM_{2.5}$ concentration value for 2015 is 17.1 μ g·m⁻³ with an annual average PM_{10} concentration of 7.3 μ g·m⁻³.

The 90th percentile of 24-hour PM_{2.5} measured at Netley AQMS is 10.4 $\mu g \cdot m^{-3}.$

Source: Northstar Air Quality

Nitrogen Dioxide

The time series plot of the measured NO_2 and NO_x is shown in **Figure B-3** below:

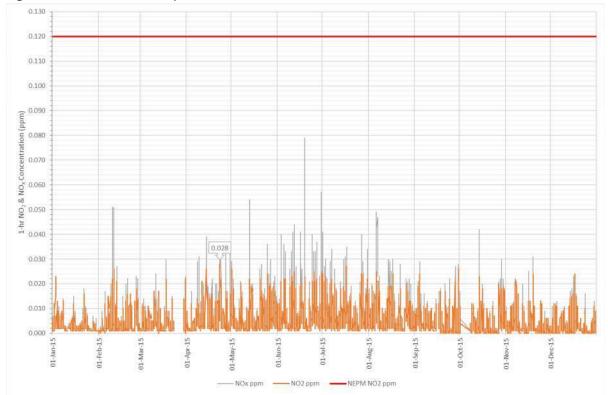


Figure B-3 Time series plot of measured 1-hour NO2 and NOX (Elizabeth Downs AQMS 2015)

Source: Northstar Air Quality

The maximum 1-hour NO₂ concentration measured at Elizabeth Downs over the 2015 monitoring period was 0.028 ppm (57.4 μ g·m⁻³), measured on 23 April 2015 and the 90th percentile value was 0.010 ppm (20.5 μ g·m⁻³).

The annual average NO₂ concentration was measured as 0.004 ppm (8.2 μ g·m⁻³).

Carbon Monoxide

The time series plot of the measured 1-hour and 8-hour CO concentrations is shown in Figure B-4 below:

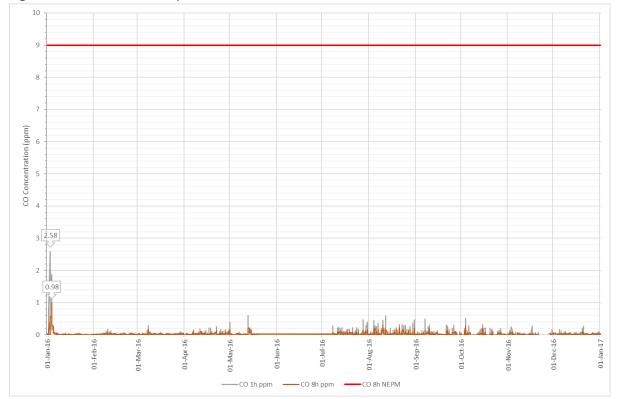


Figure B-4 Time series plot of measured 1-hour and 8-hour CO (Elizabeth Downs AQMS 2015)

Source: Northstar Air Quality

The maximum 1-hour CO concentration measured at Elizabeth Downs over the 2015 monitoring period was 2.58 ppm (3.23 mg·m⁻³), measured on 3 January 2015 and the corresponding maximum rolling 8-hour average was measured as 0.98 ppm (1.23 mg·m⁻³) measured on 4 January 2015. The corresponding 90th percentile 1-hour and 8-hour average values were 0.040 ppm (0.05 mg·m⁻³) and 0.050 ppm (0.06 mg·m⁻³) respectively.

Sulphur Dioxide

Sulphur dioxide (SO₂) monitoring is performed by the EPA in SA at the following AQMS:

- Adelaide Northfield (NOR01)
- Adelaide North Haven (NHV01)
- Spencer Port Pirie Oliver Street (PTP01)

The National Environment Protection Council (NEPC) annual report⁹ makes the following comments regarding SO_2 in SA (2014-15):

⁹ http://www.nepc.gov.au/system/files/resources/e3da1ed8-68f0-48e5-937a-5de0045feb62/files/nepc-annual-report-2014-15.pdf

"In Port Pirie, exceedences of the 1-hour SO_2 standard were recorded on 68 occasions on 38 different days. There were 4 exceedences of the 24-hr standard for SO_2 . Therefore, the 1-hour and 24-hour SO_2 standards and goals were not met at Oliver Street [Port Pirie] station. However there was not an exceedence of the 1-year standard for SO_2 ."

"For SO₂ the 1-hour, 1-day and 1-year standards and goals were met at the Adelaide metropolitan stations. The 1-year standard and goal was met at Port Pirie Oliver Street station, however there were 38 exceedences of the 1-hour and 4 exceedences of the 1-day standards at Oliver Street station so the 1-hour and 1-day goals were not achieved."

In order to represent background SO₂ concentrations at the Project site, the data from Adelaide Northfield has been accessed. For the year 2015 the following maximum concentration values were determined:

- 1-hour maximum: 28.6 μg·m⁻³
- 1-day maximum: 5.8 μg·m⁻³
- Annual average: 0.2 μg·m⁻³

In lieu of more site-specific measurements, the assumption that background SO_2 is comparable to that measured at Northfield is considered to be highly conservative.

Page left intentionally blank

APPENDIX C

EMISSIONS ESTIMATION

Presented below is a breakdown of the emissions data used in the AQIA for operations using natural gas and diesel.

The estimated emission rates for oxides of nitrogen (NO_x), carbon monoxide (CO), sulphur dioxide (SO₂) and particulate matter (PM_{2.5}) for natural gas are presented in **Table C-1**. The corresponding estimations for formaldehyde as derived from emission estimates published in US EPA *AP-42 Volume 1, Chapter 3, Section 3.1* are presented in **Table C-2**. The graphical representation of emission rates by load are presented in **Figure C-1**.

The estimated emission rates for oxides of nitrogen (NO_X), carbon monoxide (CO), sulphur dioxide (SO₂) and particulate matter (PM_{2.5}) for diesel are presented in **Table C-3**. The corresponding estimations for formaldehyde as derived from emission estimates published in US EPA *AP-42 Volume 1, Chapter 3, Section 3.1* are presented in **Table C-4**. The graphical representation of emission rates by load are presented in **Figure C-2**.

The estimated gas discharge rate and temperature profile variance with operating load is presented in **Figure C-3**.

Table C-1Estimated emission rates (NO _X , CO, SO ₂ , PM _{2.5})	with load (%) on das

Fuel	Units		Loac	l (%)	
		100%	75%	50%	25%
Stack temperature	degrees C	395	390	434	421
NO _x (as NO ₂)	mg.Nm ⁻³ ref O ₂	51.2	51.2	51.2	51.2
СО	mg.Nm ⁻³ ref O ₂	31.2	31.2	31.2	31.2
NO _x (as NO ₂)	kg.hr ⁻¹	12.38	10.09	7.87	6.6
SO ₂	kg.hr ⁻¹	1.98	1.62	1.27	1.06
Discharge rate	Nm ³ .hr ⁻¹ ref O ₂	241796.9	197070.3	153710.9	128906.3
Stack diameter	m	3.50	3.50	3.50	3.50
Velocity	m.s ⁻¹	17.08	13.82	11.49	9.45
NO _x (as NO ₂)	g.s ⁻¹	3.4389	2.8028	2.1861	1.8333
СО	g.s ⁻¹	2.0956	1.7079	1.3322	1.1172
SO ₂	g.s ⁻¹	0.5496	0.4488	0.3524	0.2935
PM _{2.5}	g.s ⁻¹	0.3780	0.3780	0.3780	0.3780

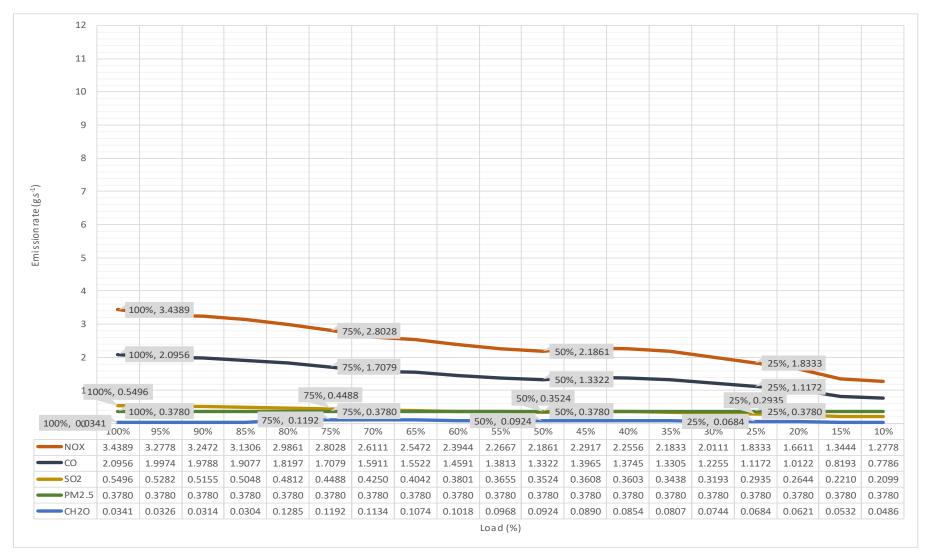

Note: PM_{2.5} emissions are derived from a constant maximum emission rate of 3 pounds (lb) per hour. It is reasonably assumed that 100% of particulate is <1 µm, and represented as PM_{2.5}.

 Table C-2
 Estimated emission rates (Formaldehyde) with load (%) on gas

Fuel	Units	Load (%)				
		100%	75%	50%	25%	
Stack temperature	degrees C	395	390	434	421	
Formaldehyde	Ib·MMscf ⁻¹ (fuel)	0.723	3.18	3.18	3.18	
Formaldehyde	g⋅m ⁻³ _(fuel, 60°F)	0.011	0.048	0.048	0.048	
Fuel consumption	Nm ³ ·hr ⁻¹	11,215	8,904	6,904	5,109	
Discharge rate	Nm ³ .hr ⁻¹ ref O ₂	241796.9	197070.3	153710.9	128906.3	
Stack diameter	m	3.50	3.50	3.50	3.50	
Velocity	m.s ⁻¹	17.08	13.82	11.49	9.45	
Formaldehyde	g.s ⁻¹	0.034	0.119	0.092	0.068	

Figure C-1 Estimated emission rates (NO_X, CO, SO₂, PM_{2.5}, CH₂O) with load (%) on gas

Source: Northstar Air Quality

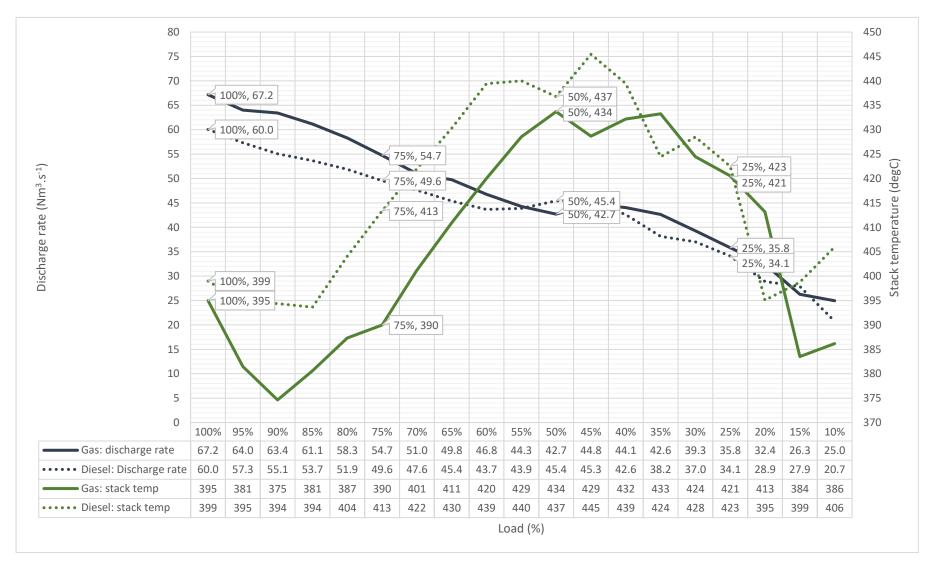
Fuel	Units		Load	d (%)	
		100%	75%	50%	25%
Stack temperature	degrees C	399	413	437	423
NO _x (as NO ₂)	mg.Nm ⁻³ ref O ₂	174.3	174.2	174.3	174.2
СО	mg.Nm ⁻³ ref O ₂	31.2	31.2	31.2	31.2
NO _x (as NO ₂)	kg.h ⁻¹	37.68	31.08	28.49	21.38
SO ₂	kg.h ⁻¹	0.17	0.14	0.13	0.10
Discharge rate	Nm ³ .hr ⁻¹ ref O ₂	216179.0	178415.6	163453.8	122732.5
Stack diameter	m	3.50	3.50	3.50	3.50
Velocity	m.s ⁻¹	15.36	12.95	12.40	9.03
NO _X (as NO ₂)	g.s ⁻¹	10.4667	8.6333	7.9139	5.9389
СО	g.s ⁻¹	1.8736	1.5463	1.4166	1.0637
SO ₂	g.s ⁻¹	0.0468	0.0386	0.0361	0.0271
PM _{2.5}	g.s ⁻¹	0.3780	0.3780	0.3780	0.3780

Table C-3Estimated emission rates (NO_x, CO, SO₂, PM_{2.5}) with load (%) on diesel

Note: PM_{2.5} emissions are derived from a constant maximum emission rate of 3 pounds (lb) per hour. It is reasonably assumed that 100% of particulate is <1 µm, and represented as PM_{2.5}.

Table C-4Estimated emission rates (formaldehyde) with load (%) on diesel

Fuel	Units	Load (%)				
		100%	75%	50%	25%	
Stack temperature	degrees C	399	413	437	423	
Formaldehyde	Ib·1000 gal ⁻¹ (fuel)	0.039	0.034	0.034	0.034	
Formaldehyde	$g \cdot kg^{-1}$ (fuel, 60°F)	0.005639	0.00491	0.00491	0.00491	
Fuel consumption	kg·hr ⁻¹ (fuel)	8,473	6,891	5,708	4,168	
Discharge rate	Nm ³ .hr ⁻¹ ref O ₂	216179.0	178415.6	163453.8	122732.5	
Stack diameter	m	3.50	3.50	3.50	3.50	
Velocity	m.s ⁻¹	15.36	12.95	12.40	9.03	
Formaldehyde	g.s ⁻¹	0.013	0.009	0.008	0.006	


Figure C-2 Estimated emission rates (NO_X, CO, SO₂, PM_{2.5}, CH₂O) with load (%) on diesel

Source: Northstar Air Quality

Figure C-3 Estimated discharge rates and temperature with load (%)

Source: Northstar Air Quality

APPENDIX D

CONSTRUCTION PHASE RISK ASSESSMENT METHODOLOGY

Provided below is a summary of the risk assessment methodology used in this assessment. It is based upon IAQM (2016) *Guidance on the assessment of dust from demolition and construction* (version 1.1), and adapted by Northstar Air Quality.

Adaptions to the Published Methodology Made by Northstar Air Quality

The adaptions made by Northstar Air Quality from the IAQM published methodology are:

- **PM**₁₀ **criterion:** an amended criterion representing the annual average PM₁₀ criterion relevant to Australia rather than the UK;
- Nomenclature: a change in nomenclature from "receptor sensitivity" to "land use value" to avoid misinterpretation of values attributed to "receptor sensitivity" and "sensitivity of the area" which may be assessed as having different values;
- **Construction traffic:** the separation of construction vehicle movements as a discrete risk assessment profile from those associated with the 'on-site' activities of demolition, earthworks and construction. The IAQM methodology considers five risk profiles of: "demolition", "earthworks", "construction" and "trackout". The adaption by Northstar Air Quality introduces a fifth risk assessment profile of "construction traffic" to the existing four risk profiles; and,
- **Tables:** minor adjustments in the visualisation of some tables.

Step 1 – Screening Based on Separation Distance

The Step 1 screening criteria provided by the IAQM guidance suggests screening out any assessment of impacts from construction activities where sensitive receptors are located:

- more than 350 m from the boundary of the site;
- more than 50 m from the route used by construction vehicles on public roads; and,
- more than 500 m from the site entrance.

This step is noted as having deliberately been chosen to be conservative, and would require assessments for most developments.

Step 2 – Risk from Construction Activities

Step 2 of the assessment provides "dust emissions magnitudes" for each of the dust generating activities; demolition, earthworks, construction, and track-out (the movement of site material onto public roads by vehicles) and construction traffic.

The magnitudes are: Large; Medium; or Small, with suggested definitions for each category as follows:

Activity	Large	Medium	Small
Demolition			
- total building volume*	• >50,000 m ³	• 20,000 m ³ to 50,000 m ³	• <20,000 m ³
- demolition height	• > 20m AGL	• 10 m and 20 m AGL	• <10 m AGL
- onsite crushing	• yes	• no	• no
- onsite screening	• yes	• no	• no
- demolition of materials with high dust potential	• yes	• yes	• no
- demolition timing	• any time of the year	• any time of the year	• wet months only
Earthworks			
- total area	 >10,000 m² 	• 2,500 m ² to 10,000 m ²	• <2,500 m ²
- soil types	 potentially dusty soil type (e.g., clay, which would be prone to suspension when dry due to small particle size 	 moderately dusty soil type (e.g., silt), 	• soil type with large grain size (e.g., sand
 heavy earth moving vehicles 	 >10 heavy earth moving vehicles active at any time 	 5 to 10 heavy earth moving vehicles active at any one time 	 <5 heavy earth moving vehicles active at any one time
- formation of bunds	• >8m AGL	• 4m to 8m AGL	• <4m AGL
- material moved	• >100,000 t	• 20,000 t to 100,000 t	• <20,000 t
- earthworks timing	• any time of the year	• any time of the year	• wet months only
Construction			
- total building volume	• 100,000 m ³	• 25,000 m ³ to 100,000 m ³	• <25,000 m ³
- piling	• yes	• yes	• no
- concrete batching	• yes	• yes	• no
- sandblasting	• yes	• no	• no
- materials	concrete	concrete	• metal cladding or timber
Trackout (within 100 m of	construction site entrance)	
- outward heavy vehicles movements per day	• >50	• 10 to 50	• <10
- surface materials	 high potential 	 moderate potential 	 low potential

Table D-1Dust Emission Magnitude Activities

Activity	Large	Medium	Small
- unpaved road length	• >100m	• 50m to 100m	• <50m
Construction Traffic (from	construction site entrance	to construction vehicle origin	n)
Demolition traffic - total building volume	• >50,000 m ³	• 20,000 m ³ to 50,000 m ³	• <10,000 m ³
Earthworks traffic - total area	• >10,000 m ²	• 2,500 m ² to 10,000 m ²	• <2,500 m ²
Earthworks traffic - soil types	 potentially dusty soil type (e.g., clay, which would be prone to suspension when dry due to small particle size 	 moderately dusty soil type (e.g., silt), 	• soil type with large grain size (e.g., sand
Earthworks traffic - material moved	• >100,000 t	• 20,000 t to 100,000 t	• <20,000 t
Construction traffic - total building volume	• 100,000 m ³	• 25,000 m ³ to 100,000 m ³	• <25,000 m ³
Total traffic - heavy vehicles movements per day when compared to existing heavy vehicle traffic	 >50% of heavy vehicle movement contribution by Project 	• 10% to 50% of heavy vehicle movement contribution by Project	 <10% of heavy vehicle movement contribution by Project

Step 3 – Sensitivity of the Area

Step 3 of the assessment process requires the sensitivity of the area to be defined. The sensitivity of the area takes into account:

- The specific sensitivities that identified land use values have to dust deposition and human health impacts;
- The proximity and number of those receptors locations;
- In the case of PM_{10} , the local background concentration; and
- Other site-specific factors, such as whether there are natural shelters such as trees to reduce the risk of wind-blown dust.

Land Use Value

Individual receptor locations may be attributed different land use values based on the land use of the land, and may be classified as having high, medium or low values relative to dust deposition and human health impacts (ecological receptors are not addressed using this approach).

Essentially, land use value is a metric of the level of amenity expectations for that land use.

The IAQM method provides guidance on the land use value with regard to dust soiling and health effects and is shown in the table below. It is noted that user expectations of amenity levels (dust soiling) is dependent on existing deposition levels.

Value	High Land Use Value	Medium Land Use Value	Low Land Use Value
Health	Locations where the public	Locations where the people	Locations where human
effects	are exposed over a time	exposed are workers, and	exposure is transient.
	period relevant to the air	exposure is over a time period	
	quality objective for PM_{10} (in	relevant to the air quality	
	the case of the 24-hour	objective for PM_{10} (in the case of	
	objectives, a relevant	the 24-hour objectives, a relevant	
	location would be one	location would be one where	
	where individuals may be	individuals may be exposed for	
	exposed for eight hours or	eight hours or more in a day).	
	more in a day).		
	Examples: Residential	Examples: Office and shop workers,	Examples: Public footpaths,
	properties, hospitals, schools	but would generally not include	playing fields, parks and
	and residential care homes.	workers occupationally exposed to	shopping street.
		PM10.	

Table D-2	AQM Guidance for Categorising La	and Use Value
	AQIVI GUIUATICE TOT CALEGOTISTING LA	ind Use value

Value	High Land Use Value	Medium Land Use Value	Low Land Use Value
Dust soiling	 Users can reasonably expect a high level of amenity; or The appearance, aesthetics or value of their property would be diminished by soiling, and the people or property would reasonably be expected to be present continuously, or at least regularly for extended periods as part of the normal pattern of use of the land. 	 Users would expect to enjoy a reasonable level of amenity, but would not reasonably expect to enjoy the same level of amenity as in their home; or The appearance, aesthetics or value of their property could be diminished by soiling; or The people or property wouldn't reasonably be expected to be present here continuously or regularly for extended periods as part of the normal pattern of use of the land. 	 The enjoyment of amenity would not reasonably be expected; or Property would not reasonably be expected to be diminished in appearance, aesthetics or value by soiling; or There is transient exposure, where the people or property would reasonably be expected to be present only for limited periods of time as part of the normal pattern of use of the land.
	Examples: Dwellings, museums, medium and long term car parks and car showrooms.	Examples: Parks and places of work.	Examples: Playing fields, farmland (unless commercially- sensitive horticultural), footpaths, short term car parks and roads.

Sensitivity of the Area

The assessed land use value (as described above) is then used to assess the *sensitivity of the area* surrounding the active construction area, taking into account the proximity and number of those receptors, and the local background PM_{10} concentration (in the case of potential health impacts) and other site-specific factors.

Additional factors to consider when determining the sensitivity of the area include:

- any history of dust generating activities in the area;
- the likelihood of concurrent dust generating activity on nearby sites;
- any pre-existing screening between the source and the receptors;
- any conclusions drawn from analysing local meteorological data which accurately represent the area; and if relevant, the season during which the works would take place;
- any conclusions drawn from local topography;
- duration of the potential impact, as a receptor may become more sensitive over time; and
- any known specific receptor sensitivities which go beyond the classifications given in the IAQM document

Sensitivity of the Area - Health Impacts

For high land use values, the method takes the existing background concentrations of PM₁₀ (as an annual average) experienced in the area of interest into account, and professional judgement may be used to determine alternative sensitivity categories, taking into account the following:

- any history of dust generating activities in the area;
- the likelihood of concurrent dust generating activity on nearby sites;
- any pre-existing screening between the source and the receptors;
- any conclusions drawn from analysing local / seasonal meteorological data;
- any conclusions drawn from local topography;
- duration of the potential impact, as a receptor may become more sensitive over time; and
- any known specific receptor sensitivities which go beyond the classifications given in the IAQM document.

Land Use	Annual Mean PM ₁₀	Number of		Distance f	rom the So	urce (m) ^(b)	
Value	Concentration (µg·m⁻³)	Receptors ^(a)	<20	<50	<100	<200	<350
		>100	High	High	High	Medium	Low
	>30	10-100	High	High	Medium	Low	Low
		1-10	High	Medium	Low	Low	Low
		>100	High	High	Medium	Low	Low
	26 – 30	10-100	High	Medium	Low	Low	Low
Linh		1-10	High	Medium	Low	Low	Low
High	22 – 26	>100	High	Medium	Low	Low	Low
		10-100	High	Medium	Low	Low	Low
		1-10	Medium	Low	Low	Low	Low
		>100	Medium	Low	Low	Low	Low
	≤22	10-100	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
Madium	-	>10	High	Medium	Low	Low	Low
Medium	-	1-10	Medium	Low	Low	Low	Low
Low	-	>1	Low	Low	Low	Low	Low

 Tabld D-3
 IAQM Guidance for Categorising the Sensitivity of an Area to Dust Health Effects

Note: (a) Estimate the total within the stated distance (e.g. the total within 350 m and not the number between 200 and 350 m), noting that only the highest level of area sensitivity from the table needs to be considered. In the case of high sensitivity areas with high occupancy (such as schools or hospitals) approximate the number of people likely to be present. In the case of residential dwellings, just include the number of properties.

(b) With regard to potential 'construction traffic' impacts, the distance criteria of <20m and <50m from the source (roadside) are used (i.e. the first two columns only). Any locations beyond 50m may be screened out of the assessment (as per Step 1) and the corresponding sensitivity is negligible'.

08000 morthstar

Sensitivity of the Area - Dust Soiling

The IAQM guidance for assessing the sensitivity of an area to dust soiling is shown in the table below

Land Use	Number of receptors ^(a)	Distance from the source (m) ^(b)					
Values	Number of receptors.	<20	<50	<100	<350		
	>100	High	High	Medium	Low		
High	10-100	High	Medium	Low	Low		
	1-10	Medium	Low	Low	Low		
Medium	>1	Medium	Low	Low	Low		
Low	>1	Low	Low	Low	Low		

Tabld D-4 IAQM Guidance for Categorising the Sensitivity of an Area to Dust Soiling Effects

Note: (a) Estimate the total number of receptors within the stated distance. Only the highest level of area sensitivity from the table needs to be considered.

(b) With regard to potential 'construction traffic' impacts, the distance criteria of <20m and <50m from the source (roadside) are used (i.e. the first two columns only). Any locations beyond 50m may be screened out of the assessment (as per Step 1) and the corresponding sensitivity is negligible'.

Step 4 - Risk Assessment (Pre-Mitigation)

The matrices shown for each activity determine the risk category with no mitigation applied.

Table D-5Risk of dust impacts from earthworks

Sensitivity of Area	Pre-Mitigated Dust Emission Magnitude (Earthworks)				
	Large	Medium	Small		
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Medium Risk	Low Risk		
Low	Low Risk	Low Risk	Negligible		

 Table D-6
 Risk of dust impacts from construction activities

Sensitivity of Area	Pre-Mitigated Dust Emission Magnitude (Construction)				
	Large	Medium	Small		
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Medium Risk	Low Risk		
Low	Low Risk	Low Risk	Negligible		

Table D-7 Risk of dust impacts from demolition activities

Sensitivity of Area	Pre-Mitigated Dust Emission Magnitude (Demolition)				
	Large	Medium	Small		
High	High Risk	Medium Risk	Medium Risk		
Medium	High Risk	Medium Risk	Low Risk		
Low	Medium Risk	Low Risk	Negligible		

Table D-8 Risk of dust impacts from trackout (within 100m of construction site entrance)

Sensitivity of Area	Pre-Mitigated Dust Emission Magnitude (Trackout)				
	Large	Medium	Small		
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Low Risk	Negligible		
Low	Low Risk	Low Risk	Negligible		

Table D-9Risk of dust impacts from construction traffic (from construction site entrance to
origin)

Sensitivity of Area	Pre-Mitigated Dust Emission Magnitude (Construction Traffic)				
	Large	Medium	Small		
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Low Risk	Negligible		
Low	Low Risk	Low Risk	Negligible		

Step 5 – Identify Mitigation

Once the risk categories are determined for each of the relevant activities, site-specific management measures can be identified based on whether the site is a low, medium or high risk site.

The identified mitigation measures are presented as follows:

- **N** = not required (although they may be implemented voluntarily)
- **D** = desirable (to be considered as part of the CEMP, but may be discounted if justification is provided);
- **H** = highly recommended (to be implemented as part of the CEMP, and should only be discounted if site-specific conditions render the requirement invalid or otherwise undesirable).

The table below presents the complete mitigation table, not that assessed as required for any specific project or activity:

Ident	tified Mitigation	Unn	nitigated Ri	sk
		Low	Medium	High
1	Communications			
1.1	Develop and implement a stakeholder communications plan that includes community engagement before work commences on site.	Ν	Н	Н
1.1	Display the name and contact details of person(s) accountable for air quality and dust issues on the site boundary. This may be the environment manager/engineer or the site manager.	Н	Н	Н
1.2	Display the head or regional office contact information.	Н	Н	Н
1.3	Develop and implement a Dust Management Plan (DMP), which may include measures to control other emissions, approved by the relevant regulatory bodies.	D	Н	н
2	Site Management			
2.1	Record all dust and air quality complaints, identify cause(s), take appropriate measures to reduce emissions in a timely manner, and record the measures taken.	Н	Н	Н
2.2	Make the complaints log available to the local authority when asked.	Н	Н	Н
2.3	Record any exceptional incidents that cause dust and/or air emissions, either on- or offsite, and the action taken to resolve the situation in the log book.	Н	Н	н
2.4	Hold regular liaison meetings with other high-risk construction sites within 500 m of the site boundary, to ensure plans are coordinated and dust and particulate matter emissions are minimised. It is important to understand the interactions of the off-site transport/ deliveries which might be using the same strategic road network routes.	Ν	Ν	Н

Table D-10Construction dust mitigation requirements (by risk)

Ident	tified Mitigation	Unr	Unmitigated Risk		
		Low	Medium	High	
3	Monitoring				
3.1	Undertake daily on-site and off-site inspections where receptors (including roads) are nearby, to monitor dust, record inspection results, and make the log available to the local authority when asked. This should include regular dust soiling checks of surfaces such as street furniture, cars and window sills within 100m of site boundary.	D	D	Н	
3.2	Carry out regular site inspections to monitor compliance with the dust management plan / CEMP, record inspection results, and make an inspection log available to the local authority when asked.	Н	Н	Н	
3.3	Increase the frequency of site inspections by the person accountable for air quality and dust issues on site when activities with a high potential to produce dust are being carried out and during prolonged dry or windy conditions.	Н	Н	Н	
3.4	Agree dust deposition, dust flux, or real-time continuous monitoring locations with the relevant regulatory bodies. Where possible commence baseline monitoring at least three months before work commences on site or, if it a large site, before work on a phase commences.	N	Н	Н	
4	Preparing and Maintaining the Site				
4.1	Plan site layout so that machinery and dust causing activities are located away from receptors, as far as is possible.	Н	Н	Н	
4.2	Erect solid screens or barriers around dusty activities or the site boundary that they are at least as high as any stockpiles on site.	Н	Н	Н	
4.3	Fully enclose site or specific operations where there is a high potential for dust production and the site is active for an extensive period.	D	н	Н	
4.4	Avoid site runoff of water or mud.	Н	Н	Н	
4.5	Keep site fencing, barriers and scaffolding clean using wet methods.	D	Н	Н	
4.6	Remove materials that have a potential to produce dust from site as soon as possible, unless being re-used on site. If they are being re-used on-site cover as described below	D	Н	Н	
4.7	Cover, seed or fence stockpiles to prevent wind erosion	D	Н	Н	
5	Operating Vehicle/Machinery and Sustainable Travel				
5.1	Ensure all on-road vehicles comply with relevant vehicle emission standards, where applicable	Н	Н	Н	
5.2	Ensure all vehicles switch off engines when stationary - no idling vehicles	Н	Н	Н	
5.3	Avoid the use of diesel or petrol-powered generators and use mains electricity or battery powered equipment where practicable	Н	н	Н	

Ident	ified Mitigation	Unr	Unmitigated Risk		
		Low	Medium	High	
5.4	Impose and signpost a maximum-speed-limit of 25 km·h ⁻¹ on surfaced and 15 km·h ⁻¹ on unsurfaced haul roads and work areas (if long haul routes are required these speeds may be increased with suitable additional control measures provided, subject to the approval of the nominated undertaker and with the agreement of the local authority, where appropriate	D	D	Н	
5.4	Produce a Construction Logistics Plan to manage the sustainable delivery of goods and materials.	N	Н	Н	
5.5	Implement a Travel Plan that supports and encourages sustainable travel (public transport, cycling, walking, and car-sharing)	Ν	D	Н	
6	Operations				
6.1	Only use cutting, grinding or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays or local extraction, e.g. suitable local exhaust ventilation systems	Н	Н	Н	
6.2	Ensure an adequate water supply on the site for effective dust/particulate matter suppression/ mitigation, using non-potable water where possible and appropriate	Н	Н	Н	
6.3	Use enclosed chutes and conveyors and covered skips	Н	Н	Н	
6.4	Minimise drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use fine water sprays on such equipment wherever appropriate	Н	Н	Н	
6.5	Ensure equipment is readily available on site to clean any dry spillages, and clean up spillages as soon as reasonably practicable after the event using wet cleaning methods.	D	Н	Н	
7	Waste Management				
7.1	Avoid bonfires and burning of waste materials.	Н	Н	Н	
8	Measures Specific to Demolition				
8.1	Soft strip inside buildings before demolition (retaining walls and windows in the rest of the building where possible, to provide a screen against dust).	D	D	Н	
8.2	Ensure effective water suppression is used during demolition operations. Hand held sprays are more effective than hoses attached to equipment as the water can be directed to where it is needed. In addition, high volume water suppression systems, manually controlled, can produce fine water droplets that effectively bring the dust particles to the ground.	Н	Н	Н	
8.3	Avoid explosive blasting, using appropriate manual or mechanical alternatives.	н	Н	Н	
8.4	Bag and remove any biological debris or damp down such material before demolition.	Н	Н	Н	

Ident	ified Mitigation	Unr	nitigated Ri	sk
		Low	Medium	High
8.5	Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as practicable.	Ν	D	Н
8.6	Use Hessian, mulches or trackifiers where it is not possible to re-vegetate or cover with topsoil, as soon as practicable.	Ν	D	Н
8.7	Only remove the cover in small areas during work and not all at once	Ν	D	Н
9	Measures Specific to Construction			
8.1	Avoid scabbling (roughening of concrete surfaces) if possible	D	D	Н
8.2	Ensure sand and other aggregates are stored in bunded areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place	D	Н	Н
8.3	Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored in silos with suitable emission control systems to prevent escape of material and overfilling during delivery.	N	D	Н
8.4	For smaller supplies of fine power materials ensure bags are sealed after use and stored appropriately to prevent dust	Ν	D	D
10	Measures Specific to Track-Out			
10.1	Use water-assisted dust sweeper(s) on the access and local roads to remove, as necessary, any material tracked out of the site.	D	Н	Н
10.2	Avoid dry sweeping of large areas.	D	Н	Н
10.3	Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport.	D	Н	Н
10.4	Inspect on-site haul routes for integrity and instigate necessary repairs to the surface as soon as reasonably practicable.	н	н	Н
10.5	Record all inspections of haul routes and any subsequent action in a site log book.	D	Н	Н
10.6	Install hard surfaced haul routes, which are regularly damped down with fixed or mobile sprinkler systems, or mobile water bowsers and regularly cleaned.	Ν	Н	Н
10.7	Implement a wheel washing system (with rumble grids to dislodge accumulated dust and mud prior to leaving the site where reasonably practicable).	D	Н	Н
10.8	Ensure there is an adequate area of hard surfaced road between the wheel wash facility and the site exit, wherever site size and layout permits.	Ν	Н	Н
10.9	Access gates to be located at least 10 m from receptors where possible.	Ν	н	н
11	Specific Measures to Construction Traffic (adapted)			
5.1	Ensure all on-road vehicles comply with relevant vehicle emission standards, where applicable	Н	Н	Н

Ident	ified Mitigation	Unmitigated Risk			
		Low	Medium	High	
8.3	Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored in silos with suitable emission control systems to prevent escape of material and overfilling during delivery.	Ν	D	н	
10.3	Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport.	D	Н	н	
10.4	Inspect on-site haul routes for integrity and instigate necessary repairs to the surface as soon as reasonably practicable.	Н	Н	н	
10.5	Record all inspections of haul routes and any subsequent action in a site log book.	D	Н	н	

Step 6 – Risk Assessment (post-mitigation)

Following Step 5, the residual impact is then determined.

The objective of the mitigation is to manage the construction phase risks to an acceptable level, and therefore it is assumed that application of the identified mitigation would result in a *low* or *negligible* residual risk (post mitigation).

APPENDIX E

DISPERSION MODELLING RESULTS

Tabulated Results – Ground Level Concentration Values

The predicted ground level concentration (GLC) results of the dispersion modelling are presented in the following tables:

Six turbines operating on gas

- Table E-1 Predicted incremental impact, CO, gas
- Table E-2 Predicted incremental impact, NO₂, gas
- Table E-3 Predicted incremental impact, PM_{2.5}, gas
- Table E-4 Predicted incremental impact, SO₂, gas
- Table E-5 Predicted incremental impact, formaldehyde, gas

Six turbines operating on diesel

- Table E-6 Predicted incremental impact, CO, diesel
- Table E-7 Predicted incremental impact, NO₂, diesel
- Table E-8 Predicted incremental impact, PM₁₀ / PM_{2.5}, diesel
- Table E-9 Predicted incremental impact, SO₂, diesel
- Table E-10 Predicted incremental impact, formaldehyde, diesel

Isopleth Plots – Selected Ground Level Concentration Values

The isopleth plots of predicted ground level concentrations (GLC) are presented in a series of figures. Not all results have been presented as plots, due to the large number that would need to be generated to cover off all the predictions (96 plots). For each pollutant, the respective maximum prediction for each fuel and operating load have generally been plotted however due to the low-order of impacts, some pollutants (e.g. CO) and some averaging periods (e.g. annual average NO_x) have not been presented.

Please note that the scale and scale bar used to depict the concentrations may not be linear, and care must be applied when interpreting the illustrated values. This has been necessary to illustrate the predicted concentration values on a scale with the relevant Air EPP criterion.

Six turbines operating on gas

- Figure E-1 Predicted incremental impact, CO, 1-hour, gas
- Figure E-2 Predicted incremental impact, CO, 8-hour, gas
- Figure E-3 Predicted incremental impact, NO_x as NO₂, 1-hour, gas
- Figure E-4 Predicted incremental impact, NO_X as NO₂, annual average
- Figure E-5 Predicted incremental impact, PM₁₀, 24-hour, gas

- Figure E-6 Predicted incremental impact, PM_{2.5}, 24-hour, gas
- Figure E-7 Predicted incremental impact, PM_{2.5}, annual average, gas
- Figure E-8 Predicted incremental impact, SO₂, 1-hour, gas
- Figure E-9 Predicted incremental impact, SO₂ 24-hour, gas
- Figure E-10 Predicted incremental impact, SO₂, annual average, gas
- Figure E-11 Predicted incremental impact, CH₂O, 1-hour, gas
- Figure E-12 Predicted incremental impact, CH₂O, 3-min, gas

Six turbines operating on diesel

- Figure E-13 Predicted incremental impact, CO, 1-hour, gas
- Figure E-14 Predicted incremental impact, CO, 8-hour, gas
- Figure E-15 Predicted incremental impact, NO_x as NO₂, 1-hour, gas
- Figure E-16 Predicted incremental impact, NO_x as NO₂, annual average
- Figure E-17 Predicted incremental impact, PM₁₀, 24-hour, gas
- Figure E-18 Predicted incremental impact, PM_{2.5}, 24-hour, gas
- Figure E-19 Predicted incremental impact, PM_{2.5}, annual average, gas
- Figure E-20 Predicted incremental impact, SO₂, 1-hour, gas
- Figure E-21 Predicted incremental impact, SO₂ 24-hour, gas
- Figure E-22 Predicted incremental impact, SO₂, annual average, gas
- Figure E-23 Predicted incremental impact, CH₂O, 1-hour, gas
- Figure E-24 Predicted incremental impact, CH₂O, 3-min, gas

Table L-1 Predicted incremental impact, CO, gas								
Load	CO, 100%	b load, gas	CO, 75%	load, gas	CO, 50%	load, gas	CO, 25%	load, gas
Units	µg·m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour
R1	27.84	7.35	32.18	6.55	24.39	5.66	17.19	4.95
R2	29.12	6.58	31.30	5.94	22.44	5.16	17.83	4.26
R3	21.82	4.61	21.71	3.87	15.70	3.16	11.60	2.54
R4	27.35	5.69	22.06	4.13	16.76	3.36	10.35	2.88
R5	26.70	5.60	21.90	4.02	16.00	3.24	10.24	2.78
R6	21.58	4.89	17.61	4.30	11.55	3.73	10.82	2.79
R7	18.48	3.80	13.98	3.71	11.22	3.37	10.14	2.86
R8	23.96	3.45	17.04	3.51	13.75	3.15	12.09	3.14
R9	31.71	5.91	26.55	6.00	22.66	5.66	21.01	5.00
R10	20.97	4.99	15.84	4.77	13.36	4.37	17.77	4.57
R11	20.31	4.63	16.68	4.41	15.11	4.12	17.43	4.85
R12	19.23	5.35	14.02	6.18	17.45	5.97	14.76	6.59
R13	15.21	6.34	16.14	6.63	16.36	6.01	10.75	6.12
R14	15.60	4.88	14.72	5.17	15.52	4.73	13.83	4.88
R15	19.19	3.45	17.30	3.41	13.37	2.94	15.79	2.79
R16	19.38	3.71	16.85	3.76	12.64	3.29	15.97	3.17
R17	22.20	4.18	17.93	3.55	14.30	3.14	13.14	3.08
R18	37.47	5.51	32.09	4.93	25.81	3.87	22.64	3.46

 Table E-1
 Predicted incremental impact, CO, gas

Load	CO, 100% load, gas		CO, 75% load, gas		CO, 50% load, gas		CO, 25% load, gas	
Units	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg·m⁻³ 8-hour
R19	17.83	3.38	13.84	2.98	9.48	2.54	12.82	2.47
R20	26.67	4.89	21.66	4.20	17.24	3.42	15.52	3.07
R21	13.68	6.94	11.57	6.98	9.18	6.23	7.83	6.05
R22	7.85	4.74	11.44	4.44	6.26	3.74	5.60	3.49
R23	11.28	3.53	7.40	3.08	8.30	2.55	5.59	2.19
R24	11.04	1.82	8.03	2.08	8.25	1.85	5.93	1.75
R25	8.09	4.45	6.65	3.02	4.90	2.67	4.80	2.61
R26	7.75	4.39	6.77	2.61	5.04	2.21	5.26	2.30
R27	12.70	1.84	6.18	3.15	5.07	2.01	4.26	1.95
R28	5.45	2.62	5.61	2.59	3.80	2.24	4.60	2.16
R29	7.05	2.01	6.27	1.72	4.92	1.43	4.05	1.31
R30	20.57	6.51	17.08	5.55	12.92	4.42	11.83	4.16
R31	10.25	2.91	7.77	2.55	5.61	2.07	5.52	1.86
R32	6.58	2.69	5.61	2.07	4.55	1.85	3.81	1.86
R33	12.76	3.34	9.36	3.15	8.40	2.82	5.98	2.79
R34	23.93	13.19	20.19	14.80	17.77	14.12	16.95	14.65
R35	8.43	2.47	7.45	2.60	7.14	2.48	6.68	2.78
R36	6.89	2.15	6.47	2.46	9.37	2.35	5.40	2.62
R37	15.06	4.72	12.55	4.05	13.79	3.38	10.47	3.40

Load	CO, 100% load, gas		CO, 75% load, gas		CO, 50% load, gas		CO, 25% load, gas	
Units	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg·m⁻³ 8-hour
R38	9.84	4.25	8.55	4.07	7.47	3.46	7.34	3.25
R39	7.20	2.90	7.61	2.69	6.87	2.27	6.87	2.26
R40	7.33	1.50	8.19	1.71	7.19	1.50	10.74	1.80
R41	18.78	3.10	8.82	2.34	6.95	2.17	6.16	1.85
R42	11.83	2.43	11.24	2.36	11.29	1.92	12.42	1.92
R43	12.27	2.68	13.17	2.26	12.77	2.00	14.29	1.80
R44	15.73	2.42	15.74	2.47	15.70	1.99	13.57	1.74
R45	16.79	2.25	18.19	2.42	14.75	1.89	10.88	1.68
R46	22.40	3.72	11.75	2.26	7.76	2.02	6.91	1.98
R47	10.44	2.46	8.94	2.61	13.28	2.29	8.49	2.47
R48	10.43	2.43	8.93	3.08	8.27	2.67	9.95	2.16
R49	17.61	5.20	16.69	4.18	14.93	3.90	14.35	3.69
R50	18.25	7.13	16.28	7.98	14.90	7.55	14.51	7.89
R51	23.25	3.58	25.71	4.79	24.95	4.46	24.76	4.14
Max (µg·m⁻³)	37.47	13.19	32.18	14.80	25.81	14.12	24.76	14.65
Criterion ^(A)	31,240 µg⋅m⁻³	11,120 µg∙m⁻³	31,240 µg∙m⁻³	11,120 µg∙m⁻³	31,240 µg⋅m⁻³	11,120 µg∙m⁻³	31,240 µg⋅m⁻³	11,120 µg∙m⁻³
	(31.24 mg·m⁻³)	(11.12 mg·m⁻³)	(31.24 mg⋅m ⁻³)	(11.12 mg·m⁻³)	(31.24 mg·m⁻³)	(11.12 mg·m⁻³)	(31.24 mg·m⁻³)	(11.12 mg⋅m ⁻³)
Plotted	No	No	No	No	No	No	No	No

Note: (A) The criterion is applicable to the predicted cumulative impact, but has been provided for context.

(B) Exceedence of the criterion is indicated by red highlighting

	Fledicted increme	antai inipact, NO2	, yas						
Load	NO _x (as NO ₂),	100% load, gas	NO _x (as NO ₂),	75% load, gas	NO _X (as NO ₂),	50% load, gas	NO _x (as NO ₂),	, 25% load, gas	
Units	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m ⁻³ annual	µg∙m⁻³1-hour	µg∙m ⁻³ annual	µg∙m⁻³1-hour	µg∙m ⁻³ annual	
R1	45.68	0.33	52.81	0.32	40.03	0.27	28.21	0.26	
R2	47.79	0.30	51.37	0.28	36.82	0.24	29.25	0.23	
R3	35.81	0.17	35.62	0.16	25.76	0.14	19.04	0.13	
R4	44.88	0.16	36.20	0.14	27.50	0.12	16.99	0.11	
R5	43.81	0.15	35.94	0.14	26.26	0.12	16.80	0.11	
R6	35.42	0.19	28.91	0.18	18.96	0.15	17.75	0.14	
R7	30.33	0.24	22.94	0.22	18.42	0.19	16.64	0.18	
R8	39.32	0.29	27.96	0.27	22.56	0.23	19.85	0.22	
R9	52.04	0.53	43.57	0.50	37.19	0.43	34.47	0.41	
R10	34.41	0.32	25.99	0.30	21.92	0.26	29.16	0.26	
R11	33.34	0.27	27.37	0.26	24.80	0.22	28.60	0.22	
R12	31.56	0.24	23.01	0.23	28.63	0.20	24.23	0.21	
R13	24.96	0.21	26.49	0.20	26.84	0.18	17.64	0.18	
R14	25.60	0.20	24.15	0.20	25.46	0.17	22.70	0.17	
R15	31.49	0.23	28.39	0.21	21.93	0.18	25.92	0.18	
R16	31.81	0.25	27.66	0.23	20.74	0.20	26.21	0.19	
R17	36.43	0.28	29.42	0.26	23.46	0.22	21.56	0.21	
R18	61.49	0.41	52.67	0.39	42.35	0.33	37.15	0.32	
R19	29.27	0.22	22.72	0.21	15.56	0.17	21.04	0.17	

Table E-2 Predicted incremental impact, NO2, gas

Load	NO _x (as NO ₂),	100% load, gas	NO _x (as NO ₂),	75% load, gas	NO _x (as NO ₂),	50% load, gas	NO _x (as NO ₂),	25% load, gas
Units	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m ⁻³ annual	µg∙m⁻³1-hour	µg∙m ⁻³ annual
R20	43.76	0.24	35.55	0.22	28.29	0.19	25.47	0.18
R21	22.44	0.26	18.98	0.26	15.07	0.23	12.86	0.23
R22	12.88	0.19	18.77	0.18	10.28	0.16	9.20	0.15
R23	18.51	0.14	12.15	0.13	13.62	0.11	9.18	0.11
R24	18.12	0.15	13.17	0.14	13.54	0.12	9.74	0.11
R25	13.28	0.12	10.91	0.11	8.03	0.09	7.87	0.09
R26	12.72	0.12	11.11	0.11	8.28	0.09	8.63	0.08
R27	20.85	0.11	10.14	0.10	8.32	0.09	7.00	0.08
R28	8.94	0.14	9.20	0.13	6.24	0.11	7.55	0.11
R29	11.57	0.14	10.28	0.13	8.07	0.11	6.65	0.10
R30	33.76	0.23	28.03	0.21	21.21	0.18	19.42	0.18
R31	16.82	0.15	12.76	0.14	9.20	0.12	9.05	0.11
R32	10.80	0.14	9.21	0.13	7.46	0.11	6.25	0.10
R33	20.95	0.17	15.36	0.15	13.79	0.13	9.81	0.12
R34	39.26	0.36	33.13	0.37	29.16	0.33	27.81	0.35
R35	13.83	0.16	12.23	0.16	11.71	0.14	10.96	0.15
R36	11.31	0.16	10.62	0.16	15.38	0.15	8.86	0.15
R37	24.71	0.25	20.60	0.24	22.63	0.20	17.17	0.19
R38	16.15	0.18	14.03	0.18	12.26	0.16	12.04	0.16

Load	NO _x (as NO ₂),	100% load, gas	NO _x (as NO ₂),	75% load, gas	NO _x (as NO ₂),	50% load, gas	NO _x (as NO ₂),	25% load, gas
Units	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m ⁻³ annual	µg∙m⁻³1-hour	µg∙m ⁻³ annual
R39	11.81	0.18	12.49	0.17	11.28	0.15	11.27	0.15
R40	12.03	0.13	13.45	0.13	11.80	0.12	17.63	0.12
R41	30.83	0.13	14.47	0.12	11.40	0.10	10.11	0.10
R42	19.41	0.12	18.44	0.11	18.52	0.10	20.38	0.09
R43	20.14	0.12	21.61	0.11	20.95	0.09	23.45	0.09
R44	25.81	0.12	25.83	0.11	25.76	0.09	22.27	0.09
R45	27.56	0.12	29.86	0.11	24.21	0.09	17.85	0.08
R46	36.76	0.14	19.29	0.13	12.73	0.11	11.33	0.11
R47	17.13	0.15	14.67	0.14	21.80	0.13	13.93	0.13
R48	17.11	0.12	14.65	0.11	13.56	0.10	16.34	0.09
R49	28.91	0.24	27.38	0.23	24.49	0.19	23.55	0.18
R50	29.95	0.29	26.71	0.30	24.45	0.28	23.82	0.30
R51	38.15	0.22	42.20	0.21	40.94	0.18	40.64	0.17
Max (µg⋅m⁻³)	61.49	0.53	52.81	0.50	42.35	0.43	40.64	0.41
Criterion ^(A)	250 μg⋅m⁻³	60 µg∙m⁻³	250 µg⋅m⁻³	60 µg∙m⁻³	250 µg∙m⁻³	60 µg∙m⁻³	250 µg∙m⁻³	60 µg⋅m⁻³
	(0.25 mg·m⁻³)	(0.06 mg·m⁻³)	(0.25 mg·m⁻³)	(0.06 mg·m⁻³)	(0.25 mg·m⁻³)	(0.06 mg·m⁻³)	(0.25 mg·m⁻³)	(0.06 mg⋅m ⁻³)
Plotted	Yes	Yes	No	No	No	No	No	No

(A) The criterion is applicable to the predicted cumulative impact, but has been provided for context. Note: NO_X to NO_2 conversion

(B) Exceedence of the criterion is indicated by red highlighting (C) Assumes a 100%

	redicted increme		, <u></u> , gas						
Load	PM, 100%	load, gas	PM, 75%	load, gas	PM, 50%	load, gas	PM, 25%	load, gas	
Units	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m⁻³ annual	
R1	0.44	0.04	0.57	0.04	0.65	0.05	0.64	0.05	
R2	0.40	0.03	0.54	0.04	0.59	0.04	0.54	0.05	
R3	0.28	0.02	0.31	0.02	0.34	0.02	0.30	0.03	
R4	0.34	0.02	0.31	0.02	0.32	0.02	0.33	0.02	
R5	0.34	0.02	0.30	0.02	0.31	0.02	0.31	0.02	
R6	0.30	0.02	0.32	0.02	0.35	0.03	0.32	0.03	
R7	0.27	0.03	0.29	0.03	0.32	0.03	0.33	0.04	
R8	0.33	0.03	0.38	0.04	0.40	0.04	0.44	0.04	
R9	0.57	0.06	0.62	0.07	0.65	0.07	0.77	0.08	
R10	0.38	0.03	0.42	0.04	0.45	0.04	0.52	0.05	
R11	0.32	0.03	0.34	0.04	0.40	0.04	0.56	0.05	
R12	0.33	0.03	0.47	0.03	0.58	0.04	0.76	0.04	
R13	0.40	0.02	0.51	0.03	0.59	0.03	0.72	0.04	
R14	0.30	0.02	0.39	0.03	0.45	0.03	0.56	0.04	
R15	0.28	0.02	0.28	0.03	0.30	0.03	0.38	0.04	
R16	0.28	0.03	0.32	0.03	0.32	0.03	0.37	0.04	
R17	0.34	0.03	0.38	0.04	0.40	0.04	0.44	0.04	
R18	0.49	0.05	0.54	0.05	0.57	0.06	0.61	0.07	
R19	0.26	0.02	0.31	0.03	0.34	0.03	0.48	0.04	

Table E-3 Predicted incremental impact, PM10 / PM2.5, gas

Load	PM, 100%	load, gas	PM, 75%	load, gas	PM, 50%	load, gas	PM, 25%	load, gas
Units	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³ 24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m ⁻³ annual
R20	0.38	0.03	0.40	0.03	0.42	0.03	0.51	0.04
R21	0.63	0.03	0.80	0.03	0.96	0.04	1.23	0.05
R22	0.54	0.02	0.66	0.02	0.74	0.03	0.86	0.03
R23	0.22	0.02	0.23	0.02	0.25	0.02	0.27	0.02
R24	0.17	0.02	0.21	0.02	0.25	0.02	0.29	0.02
R25	0.34	0.01	0.42	0.01	0.47	0.02	0.54	0.02
R26	0.38	0.01	0.44	0.01	0.47	0.02	0.55	0.02
R27	0.23	0.01	0.28	0.01	0.34	0.01	0.43	0.02
R28	0.34	0.02	0.42	0.02	0.46	0.02	0.53	0.02
R29	0.32	0.02	0.35	0.02	0.37	0.02	0.41	0.02
R30	0.61	0.02	0.68	0.03	0.72	0.03	0.78	0.04
R31	0.26	0.02	0.27	0.02	0.29	0.02	0.35	0.02
R32	0.24	0.02	0.25	0.02	0.24	0.02	0.24	0.02
R33	0.30	0.02	0.29	0.02	0.33	0.02	0.38	0.03
R34	0.81	0.04	1.12	0.05	1.37	0.06	1.73	0.07
R35	0.28	0.02	0.39	0.02	0.48	0.02	0.64	0.03
R36	0.28	0.02	0.38	0.02	0.45	0.03	0.56	0.03
R37	0.46	0.03	0.55	0.03	0.62	0.04	0.74	0.04
R38	0.51	0.02	0.61	0.02	0.66	0.03	0.75	0.03

Load	PM, 100%	load, gas	PM, 75%	load, gas	PM, 50%	load, gas	PM, 25%	load, gas
Units	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg·m⁻³ 24-hour	µg∙m⁻³ annual	µg·m⁻³ 24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m ⁻³ annual
R39	0.29	0.02	0.34	0.02	0.39	0.03	0.45	0.03
R40	0.16	0.01	0.23	0.02	0.29	0.02	0.40	0.02
R41	0.23	0.01	0.27	0.02	0.31	0.02	0.36	0.02
R42	0.17	0.01	0.20	0.02	0.20	0.02	0.28	0.02
R43	0.18	0.01	0.19	0.02	0.21	0.02	0.31	0.02
R44	0.16	0.01	0.20	0.01	0.24	0.02	0.30	0.02
R45	0.15	0.01	0.20	0.01	0.24	0.02	0.25	0.02
R46	0.26	0.02	0.28	0.02	0.32	0.02	0.38	0.02
R47	0.20	0.02	0.23	0.02	0.27	0.02	0.39	0.03
R48	0.16	0.01	0.23	0.02	0.26	0.02	0.25	0.02
R49	0.35	0.03	0.39	0.03	0.42	0.03	0.47	0.04
R50	0.45	0.03	0.74	0.04	1.15	0.05	1.98	0.06
R51	0.31	0.02	0.42	0.03	0.49	0.03	0.54	0.04
Max (µg⋅m⁻³)	0.81	0.06	1.12	0.07	1.37	0.07	1.98	0.08
Criterion ^(B)	25 µg∙m⁻³	8 µg⋅m⁻³	25 µg∙m⁻³	8 µg⋅m⁻³	25 µg∙m⁻³	8 μg⋅m⁻³	25 µg∙m⁻³	8 µg∙m⁻³
	(0.025 mg·m⁻³)	(0.008 mg·m⁻³)						
Plotted	No	No	No	No	No	No	Yes	Yes

Table E-4	Predicted incremental impact, SO ₂ , gas											
Load	SC	₂ , 100% load,	gas	SC	D ₂ , 75% load, <u>g</u>	gas	SC	D ₂ , 50% load, <u>c</u>	gas	SC) ₂ , 25% load, g	gas
Units	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ ann	µg∙m⁻³1h	µg∙m⁻³ 24h	µg∙m⁻³ann	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ann	µg∙m⁻³ 1h	µg∙m⁻³ 24h	µg∙m⁻³ ann
R1	7.30	0.65	0.05	8.46	0.68	0.05	6.45	0.61	0.04	4.52	0.49	0.04
R2	7.64	0.58	0.05	8.23	0.64	0.05	5.94	0.55	0.04	4.68	0.42	0.04
R3	5.72	0.41	0.03	5.70	0.37	0.03	4.15	0.32	0.02	3.05	0.23	0.02
R4	7.17	0.50	0.02	5.80	0.36	0.02	4.43	0.30	0.02	2.72	0.25	0.02
R5	7.00	0.49	0.02	5.75	0.35	0.02	4.23	0.29	0.02	2.69	0.24	0.02
R6	5.66	0.43	0.03	4.63	0.38	0.03	3.06	0.33	0.02	2.84	0.25	0.02
R7	4.85	0.40	0.04	3.67	0.34	0.04	2.97	0.30	0.03	2.66	0.26	0.03
R8	6.28	0.48	0.05	4.48	0.45	0.04	3.64	0.37	0.04	3.18	0.34	0.03
R9	8.32	0.83	0.08	6.98	0.74	0.08	5.99	0.60	0.07	5.52	0.60	0.07
R10	5.50	0.55	0.05	4.16	0.50	0.05	3.53	0.42	0.04	4.67	0.40	0.04
R11	5.33	0.46	0.04	4.38	0.41	0.04	4.00	0.37	0.04	4.58	0.43	0.04
R12	5.04	0.48	0.04	3.68	0.56	0.04	4.62	0.54	0.03	3.88	0.59	0.03
R13	3.99	0.57	0.03	4.24	0.60	0.03	4.33	0.55	0.03	2.82	0.56	0.03
R14	4.09	0.43	0.03	3.87	0.46	0.03	4.10	0.42	0.03	3.63	0.43	0.03
R15	5.03	0.40	0.04	4.55	0.33	0.03	3.54	0.28	0.03	4.15	0.29	0.03
R16	5.08	0.41	0.04	4.43	0.38	0.04	3.34	0.30	0.03	4.20	0.29	0.03
R17	5.82	0.49	0.04	4.71	0.46	0.04	3.78	0.37	0.04	3.45	0.34	0.03
R18	9.83	0.71	0.07	8.43	0.64	0.06	6.83	0.53	0.05	5.95	0.47	0.05
R19	4.68	0.38	0.04	3.64	0.37	0.03	2.51	0.32	0.03	3.37	0.37	0.03

Table E-4 Predicted incremental impact, SO₂, gas

Load	SO	2, 100% load, 9	gas	SC) ₂ , 75% load, g	jas	SC	D ₂ , 50% load, g	jas	SC) ₂ , 25% load, g	jas
Units	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ ann	µg∙m⁻³ 1h	µg∙m⁻³ 24h	µg∙m⁻³ann	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ ann	µg∙m⁻³ 1h	µg∙m⁻³ 24h	µg∙m⁻³ ann
R20	6.99	0.55	0.04	5.69	0.48	0.04	4.56	0.39	0.03	4.08	0.39	0.03
R21	3.59	0.92	0.04	3.04	0.95	0.04	2.43	0.89	0.04	2.06	0.95	0.04
R22	2.06	0.78	0.03	3.01	0.78	0.03	1.66	0.69	0.03	1.47	0.67	0.02
R23	2.96	0.31	0.02	1.95	0.27	0.02	2.20	0.23	0.02	1.47	0.21	0.02
R24	2.90	0.24	0.02	2.11	0.25	0.02	2.18	0.24	0.02	1.56	0.22	0.02
R25	2.12	0.50	0.02	1.75	0.49	0.02	1.30	0.43	0.01	1.26	0.42	0.01
R26	2.03	0.55	0.02	1.78	0.52	0.02	1.33	0.44	0.01	1.38	0.43	0.01
R27	3.33	0.33	0.02	1.62	0.33	0.02	1.34	0.31	0.01	1.12	0.33	0.01
R28	1.43	0.50	0.02	1.47	0.49	0.02	1.01	0.43	0.02	1.21	0.41	0.02
R29	1.85	0.46	0.02	1.65	0.41	0.02	1.30	0.34	0.02	1.06	0.32	0.02
R30	5.39	0.89	0.04	4.49	0.81	0.03	3.42	0.67	0.03	3.11	0.61	0.03
R31	2.69	0.38	0.02	2.04	0.32	0.02	1.48	0.27	0.02	1.45	0.27	0.02
R32	1.73	0.35	0.02	1.47	0.29	0.02	1.20	0.22	0.02	1.00	0.19	0.02
R33	3.35	0.44	0.03	2.46	0.34	0.02	2.22	0.31	0.02	1.57	0.30	0.02
R34	6.27	1.18	0.06	5.30	1.33	0.06	4.70	1.28	0.05	4.45	1.34	0.06
R35	2.21	0.40	0.03	1.96	0.46	0.02	1.89	0.45	0.02	1.76	0.50	0.02
R36	1.81	0.41	0.03	1.70	0.45	0.03	2.48	0.42	0.02	1.42	0.44	0.02
R37	3.95	0.67	0.04	3.30	0.65	0.04	3.65	0.58	0.03	2.75	0.57	0.03
R38	2.58	0.75	0.03	2.25	0.72	0.03	1.98	0.62	0.03	1.93	0.58	0.03

Load	SC	9 ₂ , 100% load, g	gas	SC) ₂ , 75% load, g	jas	SC	D ₂ , 50% load, g	jas	SC) ₂ , 25% load, g	jas
Units	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ ann	µg∙m⁻³1h	µg∙m⁻³ 24h	µg∙m⁻³ann	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ ann	µg∙m⁻³ 1h	µg∙m⁻³ 24h	µg∙m⁻³ ann
R39	1.89	0.42	0.03	2.00	0.41	0.03	1.82	0.36	0.02	1.80	0.35	0.02
R40	1.92	0.23	0.02	2.15	0.28	0.02	1.90	0.27	0.02	2.82	0.31	0.02
R41	4.93	0.33	0.02	2.32	0.33	0.02	1.84	0.29	0.02	1.62	0.28	0.02
R42	3.10	0.25	0.02	2.95	0.24	0.02	2.99	0.19	0.02	3.26	0.22	0.02
R43	3.22	0.27	0.02	3.46	0.22	0.02	3.38	0.20	0.02	3.75	0.24	0.01
R44	4.12	0.23	0.02	4.14	0.24	0.02	4.15	0.23	0.01	3.57	0.23	0.01
R45	4.40	0.22	0.02	4.78	0.24	0.02	3.90	0.22	0.01	2.86	0.20	0.01
R46	5.87	0.38	0.02	3.09	0.33	0.02	2.05	0.30	0.02	1.81	0.30	0.02
R47	2.74	0.29	0.02	2.35	0.27	0.02	3.51	0.25	0.02	2.23	0.30	0.02
R48	2.73	0.23	0.02	2.35	0.28	0.02	2.19	0.24	0.02	2.62	0.19	0.01
R49	4.62	0.51	0.04	4.38	0.47	0.04	3.95	0.39	0.03	3.77	0.36	0.03
R50	4.79	0.65	0.05	4.28	0.88	0.05	3.94	1.07	0.05	3.81	1.53	0.05
R51	6.10	0.45	0.03	6.76	0.50	0.03	6.60	0.46	0.03	6.51	0.42	0.03
Max (µg∙m⁻³)	9.83	1.18	0.08	8.46	1.33	0.08	6.83	1.28	0.07	6.51	1.53	0.07
Criterion ^(A)	570 μg·m⁻³ 0.57 mg·m⁻³	230 µg·m ⁻³ 0.23 mg·m ⁻³	60 μg·m⁻³ 0.06 mg·m⁻³	570 μg·m⁻³ 0.57 mg·m⁻³	230 µg·m⁻³ 0.23 mg·m⁻³	60 μg·m⁻³ 0.06 mg·m⁻³	570 μg·m⁻³ 0.57 mg·m⁻³	230 µg·m⁻³ 0.23 mg·m⁻³	60 µg·m⁻³ 0.06 mg·m⁻³	570 μg·m⁻³ 0.57 mg·m⁻³	230 µg·m⁻³ 0.23 mg·m⁻³	60 μg·m ⁻³ 0.06 mg·m ⁻³
Plotted	Yes	No	No	No	No	No	No	No	No	No	Yes	No

		intai inipact, iorini	alaenyae, gas					
Load	Formaldehyde,	100% load, gas	Formaldehyde	, 75% load, gas	Formaldehyde,	50% load, gas	Formaldehyde	, 25% load, gas
Units	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg·m⁻³ 3-min	µg∙m⁻³1-hour	µg·m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min
R1	0.45	0.82	2.25	4.09	1.69	3.08	1.05	1.92
R2	0.47	0.86	2.18	3.98	1.56	2.83	1.09	1.99
R3	0.36	0.65	1.52	2.76	1.09	1.98	0.71	1.29
R4	0.45	0.81	1.54	2.80	1.16	2.12	0.63	1.15
R5	0.43	0.79	1.53	2.78	1.11	2.02	0.63	1.14
R6	0.35	0.64	1.23	2.24	0.80	1.46	0.66	1.21
R7	0.30	0.55	0.98	1.78	0.78	1.42	0.62	1.13
R8	0.39	0.71	1.19	2.16	0.95	1.74	0.74	1.35
R9	0.52	0.94	1.85	3.37	1.57	2.86	1.29	2.34
R10	0.34	0.62	1.11	2.01	0.93	1.69	1.09	1.98
R11	0.33	0.60	1.16	2.12	1.05	1.91	1.07	1.94
R12	0.31	0.57	0.98	1.78	1.21	2.20	0.90	1.65
R13	0.25	0.45	1.13	2.05	1.13	2.07	0.66	1.20
R14	0.25	0.46	1.03	1.87	1.08	1.96	0.85	1.54
R15	0.31	0.57	1.21	2.20	0.93	1.69	0.97	1.76
R16	0.32	0.57	1.18	2.14	0.88	1.60	0.98	1.78
R17	0.36	0.66	1.25	2.28	0.99	1.81	0.80	1.46
R18	0.61	1.11	2.24	4.08	1.79	3.26	1.39	2.52
R19	0.29	0.53	0.97	1.76	0.66	1.20	0.79	1.43

Table E-5 Predicted incremental impact, formaldehyde, gas

Load	Formaldehyde,	100% load, gas	Formaldehyde	, 75% load, gas	Formaldehyde,	50% load, gas	Formaldehyde	, 25% load, gas
Units	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg·m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min
R20	0.43	0.79	1.51	2.75	1.20	2.18	0.95	1.73
R21	0.22	0.41	0.81	1.47	0.64	1.16	0.48	0.87
R22	0.13	0.23	0.80	1.45	0.43	0.79	0.34	0.62
R23	0.18	0.33	0.52	0.94	0.58	1.05	0.34	0.62
R24	0.18	0.33	0.56	1.02	0.57	1.04	0.36	0.66
R25	0.13	0.24	0.46	0.84	0.34	0.62	0.29	0.53
R26	0.13	0.23	0.47	0.86	0.35	0.64	0.32	0.59
R27	0.21	0.38	0.43	0.79	0.35	0.64	0.26	0.48
R28	0.09	0.16	0.39	0.71	0.26	0.48	0.28	0.51
R29	0.11	0.21	0.44	0.80	0.34	0.62	0.25	0.45
R30	0.33	0.61	1.19	2.17	0.90	1.63	0.72	1.32
R31	0.17	0.30	0.54	0.99	0.39	0.71	0.34	0.61
R32	0.11	0.19	0.39	0.71	0.32	0.57	0.23	0.42
R33	0.21	0.38	0.65	1.19	0.58	1.06	0.37	0.67
R34	0.39	0.71	1.41	2.57	1.23	2.24	1.04	1.89
R35	0.14	0.25	0.52	0.95	0.49	0.90	0.41	0.74
R36	0.11	0.20	0.45	0.82	0.65	1.18	0.33	0.60
R37	0.25	0.45	0.88	1.60	0.96	1.74	0.64	1.17
R38	0.16	0.29	0.60	1.09	0.52	0.94	0.45	0.82

Load	Formaldehyde,	100% load, gas	Formaldehyde	, 75% load, gas	Formaldehyde	, 50% load, gas	Formaldehyde	, 25% load, gas
Units	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min
R39	0.12	0.21	0.53	0.97	0.48	0.87	0.42	0.77
R40	0.12	0.22	0.57	1.04	0.50	0.91	0.66	1.20
R41	0.31	0.56	0.62	1.12	0.48	0.88	0.38	0.69
R42	0.19	0.35	0.78	1.43	0.78	1.43	0.76	1.38
R43	0.20	0.36	0.92	1.67	0.89	1.61	0.88	1.59
R44	0.26	0.47	1.10	2.00	1.09	1.98	0.83	1.51
R45	0.27	0.50	1.27	2.31	1.02	1.86	0.67	1.21
R46	0.36	0.66	0.82	1.49	0.54	0.98	0.42	0.77
R47	0.17	0.31	0.62	1.14	0.92	1.68	0.52	0.95
R48	0.17	0.31	0.62	1.13	0.57	1.04	0.61	1.11
R49	0.29	0.52	1.16	2.12	1.04	1.88	0.88	1.60
R50	0.30	0.54	1.14	2.07	1.03	1.88	0.89	1.62
R51	0.38	0.69	1.79	3.27	1.73	3.15	1.52	2.76
Max (µg⋅m⁻³)	0.61	1.11	2.25	4.09	1.79	3.26	1.52	2.76
Criterion ^(A)	-	44 µg∙m⁻³	-	44 µg∙m⁻³	-	44 µg⋅m⁻³	-	44 µg⋅m⁻³
		(0.044 mg·m⁻³)		(0.044 mg·m⁻³)		(0.044 mg·m⁻³)		(0.044 mg·m⁻³)
Potted	No	No	No	Yes	No	No	No	No

Note: (A) The criterion is applicable to the predicted cumulative impact as a 3-minute average, but has been provided for context. This has been converted using the method outlined in Section 4.2.6 (B) Exceedence of the criterion is indicated by red highlighting

Table E-6	Predicted incremental impact, CO, diesel									
Load	CO, 100%	load, diesel	CO, 75% k	oad, diesel	CO, 50%	oad, diesel	CO, 25% k	oad, diesel		
Units	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour		
R1	31.51	6.71	29.37	6.10	26.83	5.73	16.15	4.74		
R2	31.95	5.98	28.14	5.55	25.41	5.20	16.84	4.06		
R3	20.70	4.08	19.69	3.55	17.84	3.28	10.51	2.42		
R4	24.34	4.68	19.88	3.74	18.14	3.48	9.96	2.76		
R5	23.99	4.62	19.78	3.62	18.07 3.36		9.70	2.67		
R6	19.32	4.37	15.39	4.03	12.13	3.78	10.80	2.67		
R7	19.70	3.62	12.49	3.53	11.60	3.35	9.77	2.63		
R8	20.43	3.42	15.59	3.33	14.39	3.15	11.63	2.89		
R9	28.11	5.67	24.71	5.77	23.09	5.52	20.44	4.73		
R10	19.98	4.79	14.73	4.48	13.74	4.27	17.33	4.52		
R11	18.30	4.46	15.65	4.10	14.68	3.87	16.55	4.91		
R12	15.75	5.67	15.46	5.97	15.87	5.75	13.24	6.59		
R13	11.56	6.42	16.72	6.28	16.37	5.96	11.08	6.04		
R14	13.42	4.97	14.05	4.91	13.58	4.67	12.44	4.83		
R15	18.19	3.40	15.75	3.18	14.44	2.98	15.56	2.71		
R16	18.19	3.70	15.21	3.52	13.86	3.31	16.06	3.09		
R17	19.43	3.81	16.33	3.33	15.03	3.14	14.09	3.01		
R18	34.27	5.04	29.32	4.51	27.04	4.12	21.76	3.34		
R19	16.11	3.01	12.17	2.77	10.88	2.59	13.39	2.60		

Load	CO, 100% I	oad, diesel	CO, 75%	oad, diesel	CO, 50% l	oad, diesel	CO, 25%	oad, diesel
Units	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour						
R20	23.49	4.44	19.72	3.86	18.15	3.57	15.30	3.00
R21	12.48	6.82	10.51	6.57	9.67	6.22	8.37	5.90
R22	11.33	4.54	9.45	4.11	7.78	3.83	5.34	3.40
R23	6.06	3.27	8.10	2.84	8.15	2.70	5.77	2.10
R24	7.03	1.95	7.92	1.98	7.63	1.86	5.37	1.71
R25	12.17	3.16	6.07	2.84	5.36	2.67	5.01	2.55
R26	10.64	3.90	6.10	2.28	5.54	2.16	5.06	2.28
R27	6.14	2.96	5.29	2.69	5.01	2.37	3.94	1.95
R28	7.69	2.58	4.35	2.42	4.01	2.27	4.38	2.11
R29	6.59	1.81	5.71	1.59	5.24	1.48	3.96	1.27
R30	18.77	5.96	15.37	5.07	13.99	4.66	11.39	4.07
R31	9.01	2.69	6.85	2.33	6.14	2.16	5.20	1.87
R32	6.03	2.37	5.13	1.93	5.25	1.83	3.78	1.83
R33	10.11	3.09	9.04	2.97	8.57	2.81	5.19	2.73
R34	21.90	13.76	18.92	14.27	17.89	13.73	17.61	14.46
R35	7.01	2.39	7.04	2.49	6.65	2.39	6.62	2.82
R36	6.64	2.26	5.97	2.36	6.16	2.26	5.47	2.63
R37	13.69	4.34	12.25	3.70	12.61	3.41	10.76	3.35
R38	8.49	4.12	8.04	3.78	7.51	3.52	7.21	3.17

Load	CO, 100% I	oad, diesel	CO, 75%	oad, diesel	CO, 50% l	oad, diesel	CO, 25%	oad, diesel
Units	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg∙m⁻³ 8-hour	µg∙m⁻³1-hour	µg·m⁻³ 8-hour
R39	7.24	2.75	7.20	2.50	6.80	2.33	6.75	2.23
R40	7.48	1.61	7.73	1.61	7.26	1.52	11.02	1.83
R41	14.10	2.42	8.85	2.34	7.23	2.25	6.28	1.82
R42	9.21	2.61	11.09	2.05	10.76	1.89	12.60	1.93
R43	11.59	2.46	12.66	2.16	12.05	2.04	14.08	1.78
R44	14.65	2.08	15.85	2.27	15.43	2.08	12.77	1.64
R45	15.50	2.21	17.17	2.18	15.93	2.03	9.95	1.66
R46	17.58	3.01	10.25	2.23	8.07	2.12	6.65	1.97
R47	8.51	2.54	8.59	2.45	8.18	2.31	7.61	2.51
R48	9.55	2.78	8.59	2.92	8.14	2.74	10.21	1.96
R49	15.37	4.41	15.82	4.03	14.94	3.85	13.94	3.52
R50	16.94	7.41	15.56	7.69	14.83	7.38	14.15	8.23
R51	22.29	3.45	25.02	4.62	24.06	4.40	23.74	3.97
Max (µg⋅m⁻³)	34.27	13.76	29.37	14.27	27.04	13.73	23.74	14.46
Criterion ^(A)	31,240 µg·m⁻³	11,120 µg∙m⁻³	31,240 µg⋅m⁻³	11,120 µg∙m⁻³	31,240 µg·m⁻³	11,120 µg∙m⁻³	31,240 µg⋅m⁻³	11,120 µg∙m⁻³
	(31.24 mg·m⁻³)	(11.12 mg·m⁻³)						
Plotted	No							

Table E-7	Predicted increme	Predicted incremental impact, NO2, diesel										
Load	NO _X (as NO ₂), 1	00% load, diesel	NO _x (as NO ₂), 7	'5% load, diesel	NO _x (as NO ₂), 5	50% load, diesel	NO _x (as NO ₂), 2	5% load, diesel				
Units	µg·m⁻³1-hour	µg∙m ⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual				
R1	176.04	1.09	163.97	1.01	149.88	0.95	90.17	0.86				
R2	178.50	0.97	157.10	0.90	141.93	0.84	94.01	0.75				
R3	115.67	0.55	109.96	0.51	99.67	0.48	58.68	0.43				
R4	135.96	0.49	111.02	0.46	101.34	0.43	55.61	0.38				
R5	134.05	0.47	110.43	0.44	100.96	0.41	54.18	0.36				
R6	107.92	0.61	85.92	0.55	67.76	0.52	60.28	0.48				
R7	110.07	0.77	69.74	0.69	64.78	0.65	54.53	0.59				
R8	114.13	0.94	87.02	0.86	80.37	0.80	64.95	0.72				
R9	157.07	1.74	137.94	1.59	1.59 128.98		114.13	1.37				
R10	111.61	1.04	82.25	0.95	76.73	0.89	96.76	0.86				
R11	102.25	0.89	87.36	0.82	82.01	0.77	92.42	0.75				
R12	88.00	0.79	86.31	0.74	88.67	0.69	73.90	0.70				
R13	64.56	0.69	93.35	0.65	91.47	0.61	61.84	0.62				
R14	74.97	0.67	78.44	0.62	75.88	0.58	69.46	0.58				
R15	101.61	0.74	87.92	0.67	80.69	0.63	86.89	0.60				
R16	101.60	0.81	84.92	0.73	77.44	0.68	89.67	0.65				
R17	108.53	0.91	91.20	0.82	83.99	0.76	78.66	0.71				
R18	191.47	1.35	163.71	1.23	151.07	1.14	121.51	1.05				
R19	90.01	0.73	67.95	0.65	60.76	0.61	74.77	0.57				

Load	NO _X (as NO ₂), 10	00% load, diesel	NO _x (as NO ₂), 7	75% load, diesel	NO _X (as NO ₂), 5	50% load, diesel	NO _x (as NO ₂), 2	25% load, diesel
Units	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m ⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual
R20	131.22	0.78	110.13	0.70	101.38	0.65	85.40	0.60
R21	69.73	0.87	58.70	0.83	54.05	0.78	46.73	0.78
R22	63.27	0.62	52.74	0.57	43.48	0.54	29.84	0.51
R23	33.85	0.45	45.20	0.42	45.52	0.39	32.23	0.36
R24	39.26	0.50	44.21	0.46	42.60	0.43	29.98	0.37
R25	68.01	0.40	33.90	0.35	29.93	0.32	27.99	0.29
R26	59.43	0.39	34.05	0.34	30.96	0.31	28.24	0.28
R27	34.33	0.36	29.54	0.32	27.99	0.30	21.99	0.27
R28	42.98	0.46	24.31	0.42	22.41	0.39	24.45	0.36
R29	36.81	0.45	31.89	0.41	29.29	0.38	22.12	0.34
R30	104.86	0.73	85.80	0.67	78.16	0.63	63.61	0.59
R31	50.36	0.48	38.25	0.43	34.29	0.41	29.03	0.37
R32	33.66	0.44	28.64	0.40	29.34	0.38	21.08	0.33
R33	56.47	0.54	50.46	0.48	47.88	0.44	28.99	0.41
R34	122.34	1.21	105.65	1.18	99.95	1.11	98.33	1.21
R35	39.16	0.52	39.31	0.50	37.13	0.48	36.97	0.50
R36	37.08	0.53	33.32	0.52	34.40	0.50	30.55	0.53
R37	76.48	0.84	68.42	0.76	70.47	0.71	60.05	0.64
R38	47.45	0.59	44.86	0.57	41.97	0.54	40.28	0.55

Load	NO _X (as NO ₂), 1	00% load, diesel	NO _x (as NO ₂), 7	75% load, diesel	NO _x (as NO ₂), 5	i0% load, diesel	NO _x (as NO ₂), 2	25% load, diesel
Units	µg∙m⁻³1-hour	µg∙m ⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual	µg∙m⁻³1-hour	µg∙m⁻³ annual
R39	40.47	0.60	40.17	0.55	38.00	0.52	37.67	0.50
R40	41.81	0.43	43.17	0.42	40.57	0.39	61.50	0.41
R41	78.75	0.42	49.40	0.39	40.41	0.36	35.07	0.34
R42	51.46	0.39	61.93	0.36	60.09	0.34	70.37	0.31
R43	64.74	0.39	70.70	0.35	67.30	0.33	78.60	0.30
R44	81.84	0.38	88.50	0.34	86.18	0.32	71.29	0.29
R45	86.58	0.38	95.87	0.34	89.01	0.31	55.58	0.28
R46	98.21	0.45	57.21	0.42	45.08	0.39	37.13	0.37
R47	47.56	0.49	47.98	0.46	45.69	0.43	42.48	0.42
R48	53.36	0.39	47.97	0.35	45.48	0.33	57.01	0.31
R49	85.88	0.78	88.31	0.71	83.46	0.66	77.85	0.61
R50	94.65	0.99	86.90	0.98	82.83	0.93	78.99	1.03
R51	124.56	0.72	139.70	0.67	134.43	0.63	132.57	0.58
Max (µg⋅m⁻³)	191.47	1.74	163.97	1.59	151.07	1.49	132.57	1.37
Criterion ^(A)	250 µg∙m⁻³	60 µg⋅m⁻³	250 µg∙m⁻³	60 µg∙m⁻³	250 μg⋅m⁻³	60 µg∙m⁻³	250 µg∙m⁻³	60 µg∙m⁻³
	(0.25 mg·m⁻³)	(0.06 mg·m⁻³)	(0.25 mg·m⁻³)	(0.06 mg·m⁻³)	(0.25 mg·m⁻³)	(0.06 mg·m⁻³)	(0.25 mg·m⁻³)	(0.06 mg·m⁻³)
Plotted	Yes	Yes	No	No	No	No	No	No

(A) The criterion is applicable to the predicted cumulative impact, but has been provided for context. Note: NO_X to NO_2 conversion

(B) Exceedence of the criterion is indicated by red highlighting (C) Assumes a 100%

	r redicted increme	intar impact, i wir	0 / 1 WIZ.5, diesei							
Load	PM, 100%	load, diesel	PM, 75% l	oad, diesel	PM, 50%	oad, diesel	PM, 25%	oad, diesel		
Units	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg·m⁻³ annual	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m⁻³ annual		
R1	0.48	0.04	0.60	0.04	0.62	0.05	0.61	0.05		
R2	0.47	0.04	0.56	0.04	0.57	0.04	0.51	0.05		
R3	0.28	0.02	0.32	0.02	0.33	0.02	0.29	0.03		
R4	0.32	0.02	0.31	0.02	0.31	0.02	0.33	0.02		
R5	0.31	0.02	0.30	0.02	0.30	0.02	0.32	0.02		
R6	0.30	0.02	0.33	0.02	0.34	0.02	0.32	0.03		
R7	0.28	0.03	0.29	0.03	0.30	0.03	0.34	0.04		
R8	0.35	0.03	0.38	0.04	0.39	0.04	0.45	0.05		
R9	0.61	0.06	0.63	0.07	0.64	0.07	0.79	0.09		
R10	0.40	0.04	0.43	0.04	0.44	0.04	0.54	0.06		
R11	0.34	0.03	0.35	0.04	0.36	0.04	0.59	0.05		
R12	0.39	0.03	0.50	0.03	0.53	0.03	0.80	0.04		
R13	0.45	0.02	0.53	0.03	0.55	0.03	0.74	0.04		
R14	0.34	0.02	0.41	0.03	0.42	0.03	0.58	0.04		
R15	0.33	0.03	0.27	0.03	0.28	0.03	0.40	0.04		
R16	0.35	0.03	0.30	0.03	0.30	0.03	0.40	0.04		
R17	0.36	0.03	0.38	0.04	0.38	0.04	0.46	0.05		
R18	0.51	0.05	0.54	0.05	0.55 0.05		0.61	0.07		
R19	0.32	0.03	0.29	0.03	0.30	0.03	0.52	0.04		

Table E-8 Predicted incremental impact, PM10 / PM2.5, diesel

Load	PM, 100%	oad, diesel	PM, 75%	oad, diesel	PM, 50%	oad, diesel	PM, 25% l	oad, diesel
Units	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m ⁻³ annual
R20	0.39	0.03	0.41	0.03	0.41	0.03	0.55	0.04
R21	0.70	0.03	0.84	0.04	0.87	0.04	1.29	0.05
R22	0.59	0.02	0.68	0.03	0.70	0.03	0.89	0.03
R23	0.22	0.02	0.24	0.02	0.24	0.02	0.28	0.02
R24	0.17	0.02	0.23	0.02	0.24	0.02	0.30	0.02
R25	0.38	0.01	0.43	0.02	0.44	0.02	0.55	0.02
R26	0.41	0.01	0.45	0.01	0.45	0.01	0.57	0.02
R27	0.25	0.01	0.30	0.01	0.31	0.01	0.45	0.02
R28	0.38	0.02	0.43	0.02	0.44	0.02	0.55	0.02
R29	0.33	0.02	0.35	0.02	0.35	0.02	0.42	0.02
R30	0.64	0.03	0.69	0.03	0.70	0.03	0.80	0.04
R31	0.27	0.02	0.27	0.02	0.28	0.02	0.37	0.02
R32	0.25	0.02	0.24	0.02	0.24	0.02	0.25	0.02
R33	0.28	0.02	0.30	0.02	0.31	0.02	0.39	0.03
R34	0.95	0.04	1.19	0.05	1.25	0.05	1.80	0.08
R35	0.33	0.02	0.41	0.02	0.43	0.02	0.69	0.03
R36	0.32	0.02	0.39	0.02	0.41	0.02	0.59	0.03
R37	0.49	0.03	0.57	0.03	0.58	0.03	0.76	0.04
R38	0.56	0.02	0.62	0.02	0.64	0.03	0.77	0.03

Load	PM, 100%	load, diesel	PM, 75%	oad, diesel	PM, 50%	oad, diesel	PM, 25%	oad, diesel
Units	µg∙m⁻³24-hour	µg∙m⁻³ annual	µg·m⁻³ 24-hour	µg∙m⁻³ annual	µg·m⁻³ 24-hour	µg∙m⁻³ annual	µg∙m⁻³24-hour	µg∙m ⁻³ annual
R39	0.31	0.02	0.36	0.02	0.36	0.02	0.46	0.03
R40	0.19	0.02	0.25	0.02	0.26	0.02	0.43	0.03
R41	0.25	0.02	0.28	0.02	0.29	0.02	0.37	0.02
R42	0.20	0.01	0.20	0.02	0.19	0.02	0.30	0.02
R43	0.19	0.01	0.20	0.02	0.20	0.02	0.32	0.02
R44	0.16	0.01	0.21	0.02	0.21	0.02	0.30	0.02
R45	0.17	0.01	0.21	0.01	0.22	0.02	0.25	0.02
R46	0.25	0.02	0.29	0.02	0.30	0.02	0.40	0.02
R47	0.21	0.02	0.23	0.02	0.24	0.02	0.42	0.03
R48	0.19	0.01	0.24	0.02	0.25	0.02	0.24	0.02
R49	0.37	0.03	0.40	0.03	0.41	0.03	0.48	0.04
R50	0.52	0.04	0.84	0.04	0.93	0.04	2.17	0.07
R51	0.32	0.03	0.45	0.03	0.46	0.03	0.54	0.04
Max (µg⋅m⁻³)	0.95	0.06	1.19	0.07	1.25	0.07	2.17	0.09
Criterion PM _{2.5} ^(B)	25 µg∙m⁻³	8 µg⋅m⁻³	25 µg∙m⁻³	8 µg·m⁻³	25 µg∙m⁻³	8 µg∙m⁻³	25 µg⋅m⁻³	8 µg∙m⁻³
	(0.025 mg·m⁻³)	(0.008 mg·m⁻³)						
Plotted	No	No	No	No	No	No	Yes	Yes

Table E-9	Predicte	d increment	al impact, S	J ₂ , diesel								
Load	SO ₂	, 100% load, d	iesel	SO ₂	, 75% load, di	esel	SO ₂	, 50% load, di	esel	SO	2, 25% load, di	esel
Units	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ann	µg∙m⁻³1h	µg∙m⁻³ 24h	µg∙m⁻³ ann	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ann	µg∙m⁻³ 1h	µg∙m⁻³ 24h	µg∙m⁻³ ann
R1	0.79	0.06	0.00	0.73	0.06	0.00	0.68	0.06	0.00	0.41	0.04	0.00
R2	0.80	0.06	0.00	0.70	0.06	0.00	0.65	0.05	0.00	0.43	0.04	0.00
R3	0.52	0.03	0.00	0.49	0.03	0.00	0.45	0.03	0.00	0.27	0.02	0.00
R4	0.61	0.04	0.00	0.50	0.03	0.00	0.46	0.03	0.00	0.25	0.02	0.00
R5	0.60	0.04	0.00	0.49	0.03	0.00	0.46	0.03	0.00	0.25	0.02	0.00
R6	0.48	0.04	0.00	0.38	0.03	0.00	0.31	0.03	0.00	0.28	0.02	0.00
R7	0.49	0.03	0.00	0.31	0.03	0.00	0.30	0.03	0.00	0.25	0.02	0.00
R8	0.51	0.04	0.00	0.39	0.04	0.00	0.37	0.04	0.00	0.30	0.03	0.00
R9	0.70	0.07	0.01	0.62	0.06	0.01	0.59	0.06	0.01	0.52	0.06	0.01
R10	0.50	0.05	0.00	0.37	0.04	0.00	0.35	0.04	0.00	0.44	0.04	0.00
R11	0.46	0.04	0.00	0.39	0.04	0.00	0.37	0.03	0.00	0.42	0.04	0.00
R12	0.39	0.05	0.00	0.39	0.05	0.00	0.40	0.05	0.00	0.34	0.06	0.00
R13	0.29	0.06	0.00	0.42	0.05	0.00	0.42	0.05	0.00	0.28	0.05	0.00
R14	0.34	0.04	0.00	0.35	0.04	0.00	0.35	0.04	0.00	0.32	0.04	0.00
R15	0.45	0.04	0.00	0.39	0.03	0.00	0.37	0.03	0.00	0.40	0.03	0.00
R16	0.45	0.04	0.00	0.38	0.03	0.00	0.35	0.03	0.00	0.41	0.03	0.00
R17	0.49	0.05	0.00	0.41	0.04	0.00	0.38	0.04	0.00	0.36	0.03	0.00
R18	0.86	0.06	0.01	0.73	0.06	0.01	0.69	0.05	0.01	0.55	0.04	0.00
R19	0.40	0.04	0.00	0.30	0.03	0.00	0.28	0.03	0.00	0.34	0.04	0.00

Load	SO ₂	, 100% load, di	iesel	SO	, 75% load, di	esel	SO	, 50% load, di	esel	SO ₂	, 25% load, di	esel
Units	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ ann	µg∙m⁻³ 1h	µg∙m⁻³ 24h	µg∙m⁻³ann	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ ann	µg∙m⁻³ 1h	µg∙m⁻³ 24h	µg∙m⁻³ ann
R20	0.59	0.05	0.00	0.49	0.04	0.00	0.46	0.04	0.00	0.39	0.04	0.00
R21	0.31	0.09	0.00	0.26	0.09	0.00	0.25	0.08	0.00	0.21	0.09	0.00
R22	0.28	0.07	0.00	0.24	0.07	0.00	0.20	0.07	0.00	0.14	0.06	0.00
R23	0.15	0.03	0.00	0.20	0.02	0.00	0.21	0.02	0.00	0.15	0.02	0.00
R24	0.18	0.02	0.00	0.20	0.02	0.00	0.19	0.02	0.00	0.14	0.02	0.00
R25	0.30	0.05	0.00	0.15	0.04	0.00	0.14	0.04	0.00	0.13	0.04	0.00
R26	0.27	0.05	0.00	0.15	0.05	0.00	0.14	0.04	0.00	0.13	0.04	0.00
R27	0.15	0.03	0.00	0.13	0.03	0.00	0.13	0.03	0.00	0.10	0.03	0.00
R28	0.19	0.05	0.00	0.11	0.04	0.00	0.10	0.04	0.00	0.11	0.04	0.00
R29	0.16	0.04	0.00	0.14	0.04	0.00	0.13	0.03	0.00	0.10	0.03	0.00
R30	0.47	0.08	0.00	0.38	0.07	0.00	0.36	0.07	0.00	0.29	0.06	0.00
R31	0.23	0.03	0.00	0.17	0.03	0.00	0.16	0.03	0.00	0.13	0.03	0.00
R32	0.15	0.03	0.00	0.13	0.02	0.00	0.13	0.02	0.00	0.10	0.02	0.00
R33	0.25	0.03	0.00	0.23	0.03	0.00	0.22	0.03	0.00	0.13	0.03	0.00
R34	0.55	0.12	0.01	0.47	0.12	0.01	0.46	0.12	0.01	0.45	0.13	0.01
R35	0.18	0.04	0.00	0.18	0.04	0.00	0.17	0.04	0.00	0.17	0.05	0.00
R36	0.17	0.04	0.00	0.15	0.04	0.00	0.16	0.04	0.00	0.14	0.04	0.00
R37	0.34	0.06	0.00	0.31	0.06	0.00	0.32	0.06	0.00	0.27	0.05	0.00
R38	0.21	0.07	0.00	0.20	0.06	0.00	0.19	0.06	0.00	0.18	0.06	0.00

Load	SO ₂	, 100% load, d	iesel	SO	, 75% load, di	esel	SO2	2, 50% load, di	esel	SO ₂	, 25% load, di	esel
Units	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ ann	µg∙m⁻³ 1h	µg∙m⁻³ 24h	µg∙m⁻³ann	µg∙m⁻³ 1h	µg∙m⁻³24h	µg∙m⁻³ann	µg∙m⁻³ 1h	µg∙m⁻³ 24h	µg∙m⁻³ ann
R39	0.18	0.04	0.00	0.18	0.04	0.00	0.17	0.03	0.00	0.17	0.03	0.00
R40	0.19	0.02	0.00	0.19	0.03	0.00	0.19	0.03	0.00	0.28	0.03	0.00
R41	0.35	0.03	0.00	0.22	0.03	0.00	0.18	0.03	0.00	0.16	0.03	0.00
R42	0.23	0.03	0.00	0.28	0.02	0.00	0.27	0.02	0.00	0.32	0.02	0.00
R43	0.29	0.02	0.00	0.32	0.02	0.00	0.31	0.02	0.00	0.36	0.02	0.00
R44	0.37	0.02	0.00	0.40	0.02	0.00	0.39	0.02	0.00	0.33	0.02	0.00
R45	0.39	0.02	0.00	0.43	0.02	0.00	0.41	0.02	0.00	0.25	0.02	0.00
R46	0.44	0.03	0.00	0.26	0.03	0.00	0.21	0.03	0.00	0.17	0.03	0.00
R47	0.21	0.03	0.00	0.21	0.02	0.00	0.21	0.02	0.00	0.19	0.03	0.00
R48	0.24	0.02	0.00	0.21	0.02	0.00	0.21	0.02	0.00	0.26	0.02	0.00
R49	0.38	0.05	0.00	0.39	0.04	0.00	0.38	0.04	0.00	0.36	0.03	0.00
R50	0.42	0.06	0.00	0.39	0.09	0.00	0.38	0.09	0.00	0.36	0.16	0.00
R51	0.56	0.04	0.00	0.62	0.05	0.00	0.61	0.04	0.00	0.60	0.04	0.00
Max (µg∙m⁻³)	0.86	0.12	0.01	0.73	0.12	0.01	0.69	0.12	0.01	0.60	0.16	0.01
Criterion ^(A)	570 μg·m⁻³ 0.57 mg·m⁻³	230 µg·m ⁻³ 0.23 mg·m ⁻³	60 µg·m⁻³ 0.06 mg·m⁻³	570 μg·m⁻³ 0.57 mg·m⁻³	230 µg·m⁻³ 0.23 mg·m⁻³	60 μg·m⁻³ 0.06 mg·m⁻³	570 μg·m⁻³ 0.57 mg·m⁻³	230 µg·m ⁻³ 0.23 mg·m ⁻³	60 μg·m⁻³ 0.06 mg·m⁻³	570 μg·m ⁻³ 0.57 mg·m ⁻³	230 µg·m⁻³ 0.23 mg·m⁻³	60 µg·m⁻³ 0.06 mg·m⁻³
Plotted	No	No	No	No	No	No	No	No	No	No	No	No

	redeted incentental impact, formaldenyde, dieser								
Load	Formaldehyde,	100% load, diesel	Formaldehyde, 75% load, diesel		Formaldehyde, 50% load, diesel		Formaldehyde, 25% load, diesel		
Units	µg·m⁻³1-hour	µg·m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg·m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	
R1	0.11	0.19	0.10	0.19	0.11	0.20	0.08	0.14	
R2	0.11	0.20	0.10	0.18	0.10	0.19	0.08	0.15	
R3	0.07	0.13	0.07	0.13	0.07	0.13	0.05	0.09	
R4	0.08	0.15	0.07	0.13	0.07	0.14	0.05	0.09	
R5	0.08	0.15	0.07	0.13	0.07	0.13	0.05	0.08	
R6	0.06	0.12	0.05	0.10	0.05	0.09	0.05	0.09	
R7	0.07	0.12	0.04	0.08	0.05	0.09	0.05	0.09	
R8	0.07	0.13	0.06	0.10	0.06	0.11	0.06	0.10	
R9	0.09	0.17	0.09	0.16	0.09	0.17	0.10	0.18	
R10	0.07	0.12	0.05	0.10	0.06	0.10	0.08	0.15	
R11	0.06	0.11	0.06	0.10	0.06	0.11	0.08	0.14	
R12	0.05	0.10	0.05	0.10	0.06	0.12	0.06	0.12	
R13	0.04	0.07	0.06	0.11	0.07	0.12	0.05	0.10	
R14	0.05	0.08	0.05	0.09	0.06	0.10	0.06	0.11	
R15	0.06	0.11	0.06	0.10	0.06	0.11	0.07	0.14	
R16	0.06	0.11	0.05	0.10	0.06	0.10	0.08	0.14	
R17	0.07	0.12	0.06	0.11	0.06	0.11	0.07	0.12	
R18	0.12	0.21	0.10	0.19	0.11	0.20	0.10	0.19	
R19	0.05	0.10	0.04	0.08	0.04	0.08	0.06	0.12	

Table E-10 Predicted incremental impact, formaldehyde, diesel

Load	Formaldehyde, 100% load, diesel		Formaldehyde, 75% load, diesel		Formaldehyde, 50% load, diesel		Formaldehyde, 25% load, diesel	
Units	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg·m⁻³ 3-min	µg∙m⁻³1-hour	µg·m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min
R20	0.08	0.14	0.07	0.13	0.07	0.14	0.07	0.13
R21	0.04	0.08	0.04	0.07	0.04	0.07	0.04	0.07
R22	0.04	0.07	0.03	0.06	0.03	0.06	0.03	0.05
R23	0.02	0.04	0.03	0.05	0.03	0.06	0.03	0.05
R24	0.02	0.04	0.03	0.05	0.03	0.06	0.03	0.05
R25	0.04	0.07	0.02	0.04	0.02	0.04	0.02	0.04
R26	0.04	0.07	0.02	0.04	0.02	0.04	0.02	0.04
R27	0.02	0.04	0.02	0.03	0.02	0.04	0.02	0.03
R28	0.03	0.05	0.02	0.03	0.02	0.03	0.02	0.04
R29	0.02	0.04	0.02	0.04	0.02	0.04	0.02	0.03
R30	0.06	0.11	0.05	0.10	0.06	0.10	0.05	0.10
R31	0.03	0.06	0.02	0.04	0.03	0.05	0.02	0.05
R32	0.02	0.04	0.02	0.03	0.02	0.04	0.02	0.03
R33	0.03	0.06	0.03	0.06	0.04	0.06	0.02	0.05
R34	0.07	0.13	0.07	0.12	0.07	0.13	0.08	0.15
R35	0.02	0.04	0.03	0.05	0.03	0.05	0.03	0.06
R36	0.02	0.04	0.02	0.04	0.03	0.05	0.03	0.05
R37	0.05	0.08	0.04	0.08	0.05	0.09	0.05	0.09
R38	0.03	0.05	0.03	0.05	0.03	0.06	0.03	0.06

Load	Formaldehyde, 100% load, diesel		Formaldehyde, 75% load, diesel		Formaldehyde, 50% load, diesel		Formaldehyde, 25% load, diesel	
Units	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min	µg∙m⁻³1-hour	µg∙m⁻³ 3-min
R39	0.02	0.04	0.03	0.05	0.03	0.05	0.03	0.06
R40	0.03	0.05	0.03	0.05	0.03	0.05	0.05	0.10
R41	0.05	0.09	0.03	0.06	0.03	0.05	0.03	0.05
R42	0.03	0.06	0.04	0.07	0.04	0.08	0.06	0.11
R43	0.04	0.07	0.05	0.08	0.05	0.09	0.07	0.12
R44	0.05	0.09	0.06	0.10	0.06	0.11	0.06	0.11
R45	0.05	0.09	0.06	0.11	0.07	0.12	0.05	0.09
R46	0.06	0.11	0.04	0.07	0.03	0.06	0.03	0.06
R47	0.03	0.05	0.03	0.06	0.03	0.06	0.04	0.07
R48	0.03	0.06	0.03	0.06	0.03	0.06	0.05	0.09
R49	0.05	0.09	0.06	0.10	0.06	0.11	0.07	0.12
R50	0.06	0.10	0.06	0.10	0.06	0.11	0.07	0.12
R51	0.07	0.14	0.09	0.16	0.10	0.18	0.11	0.21
Max (µg⋅m⁻³)	0.12	0.21	0.10	0.19	0.11	0.20	0.11	0.21
Criterion ^(A)	-	44 µg∙m⁻³	-	44 µg∙m⁻³	-	44 µg⋅m⁻³	-	44 µg⋅m⁻³
		(0.044 mg·m⁻³)		(0.044 mg·m⁻³)		(0.044 mg·m⁻³)		(0.044 mg·m⁻³)
Plotted	No	No	No	No	No	No	No	No

Note: (A) The criterion is applicable to the predicted cumulative impact as a 3-minute average, but has been provided for context. This has been converted using the method outlined in Section 4.2.6 (B) Exceedence of the criterion is indicated by red highlighting

Figure E-1 Predicted incremental impact, NO_X (as NO₂), 1-hour, 100%, gas

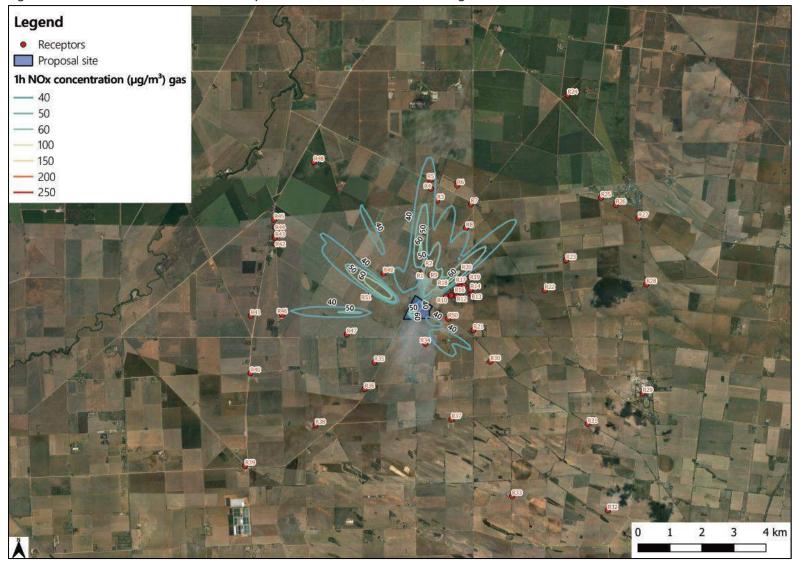
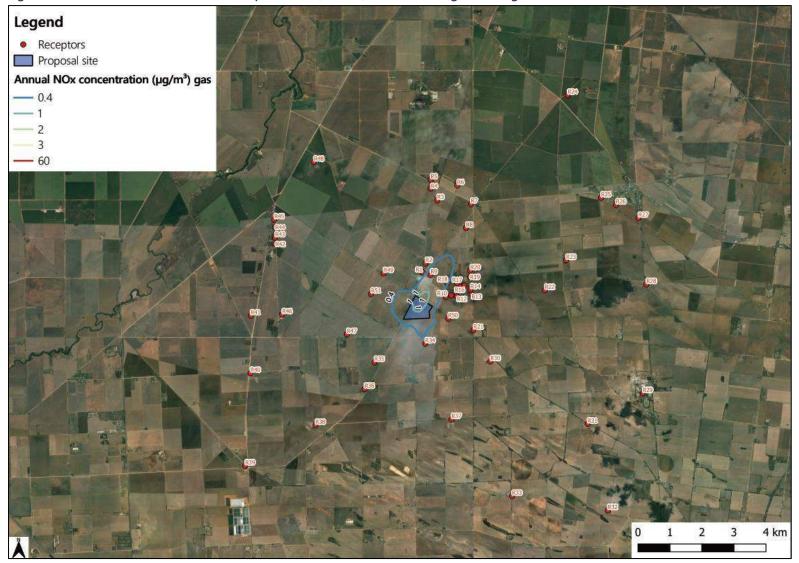



Figure E-2 Predicted incremental impact, NO_X (as NO₂), annual average, 100%, gas

Figure E-3 Predicted incremental impact, PM, 24-hour, 25%, gas

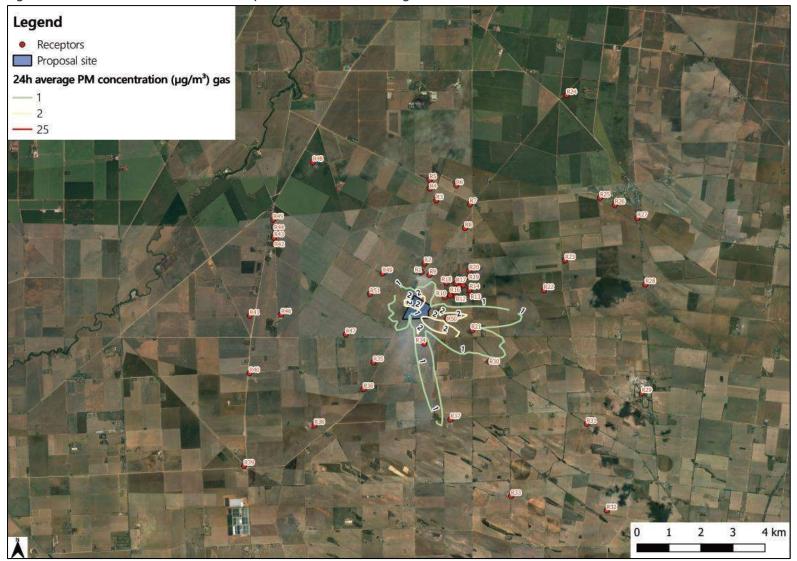


Figure E-4 Predicted incremental impact, PM, annual average, 25%, gas

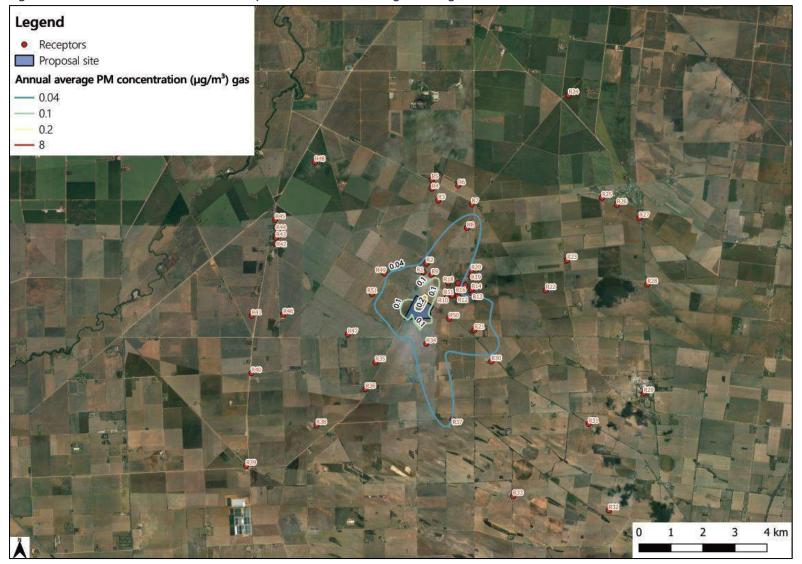


Figure E-5 Predicted incremental impact, SO₂, 1-hour, 100%, gas

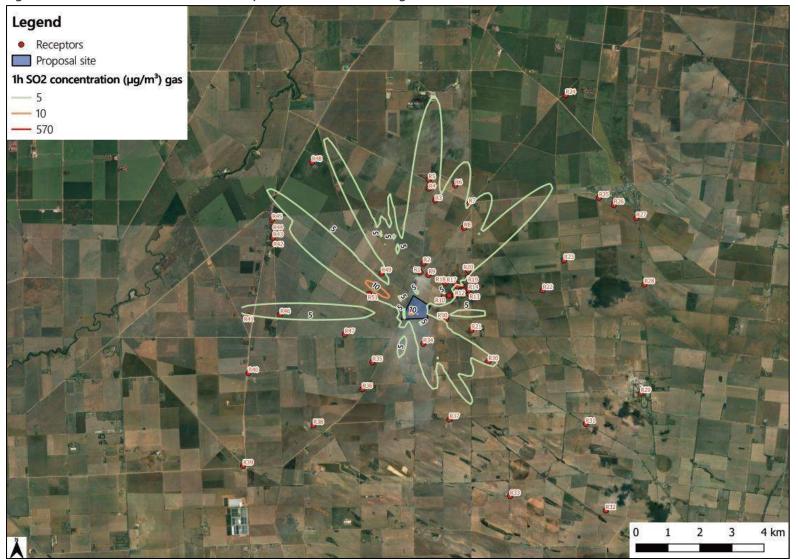


Figure E-6 Predicted incremental impact, SO₂ 24-hour, 25%, gas

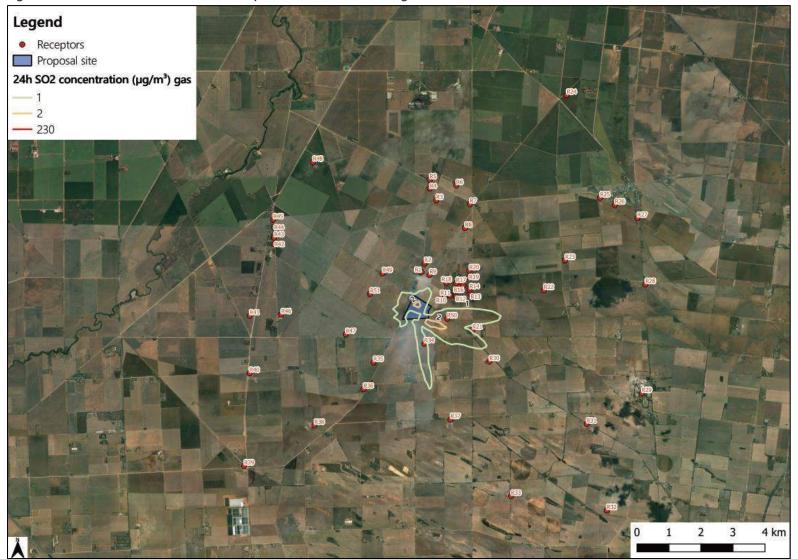


Figure E-7 Predicted incremental impact, CH₂O, 3-minute, 75%, gas

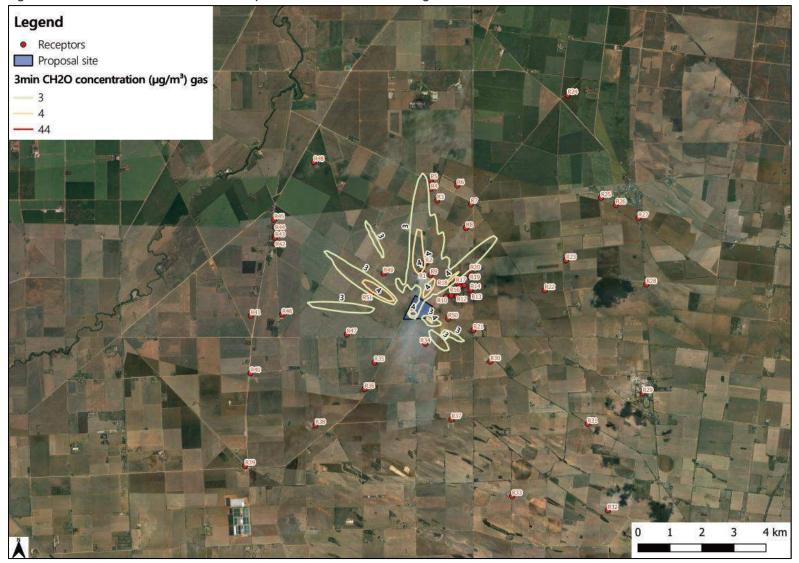


Figure E-8 Predicted incremental impact, NO_X (as NO₂), 1-hour, 100%, diesel

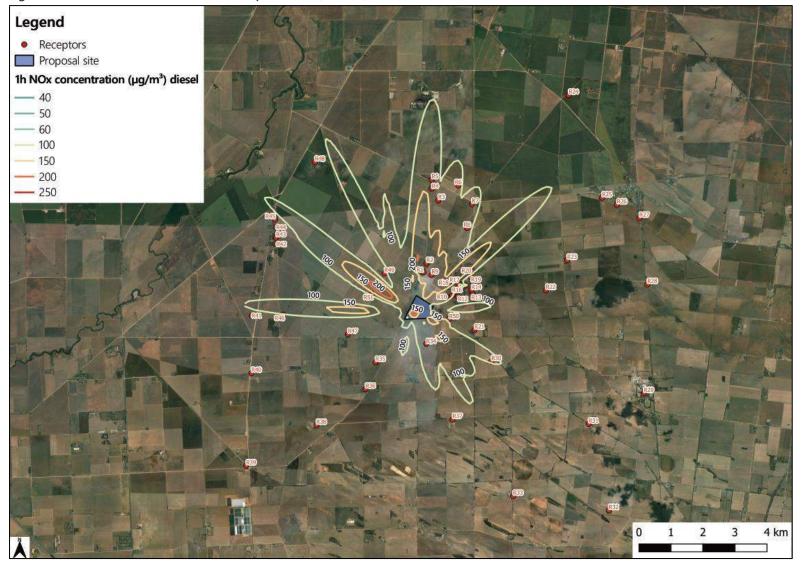
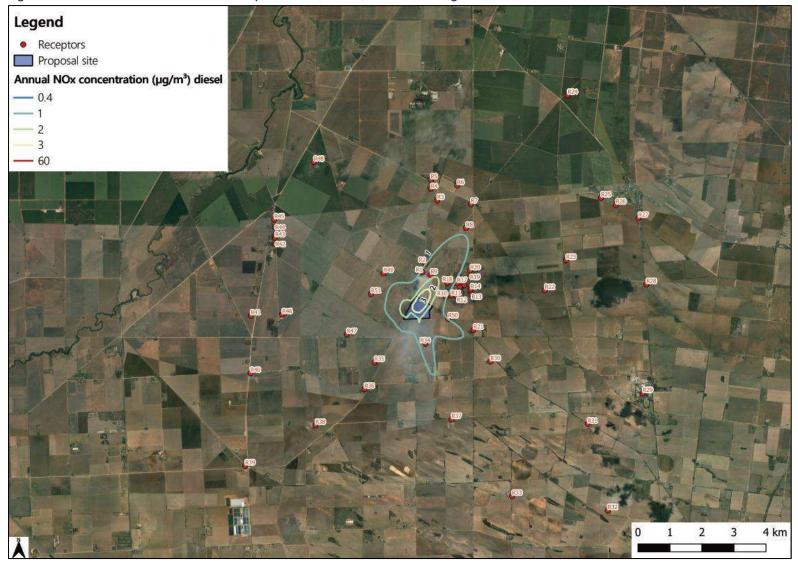
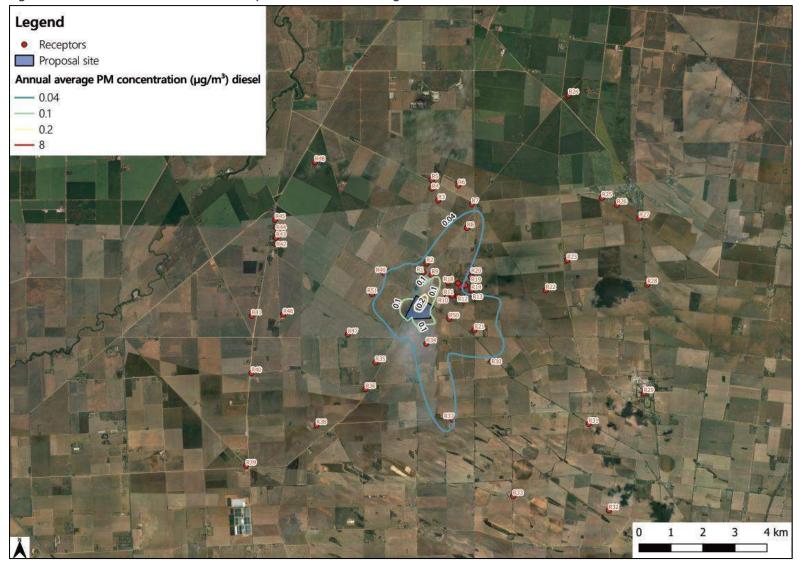
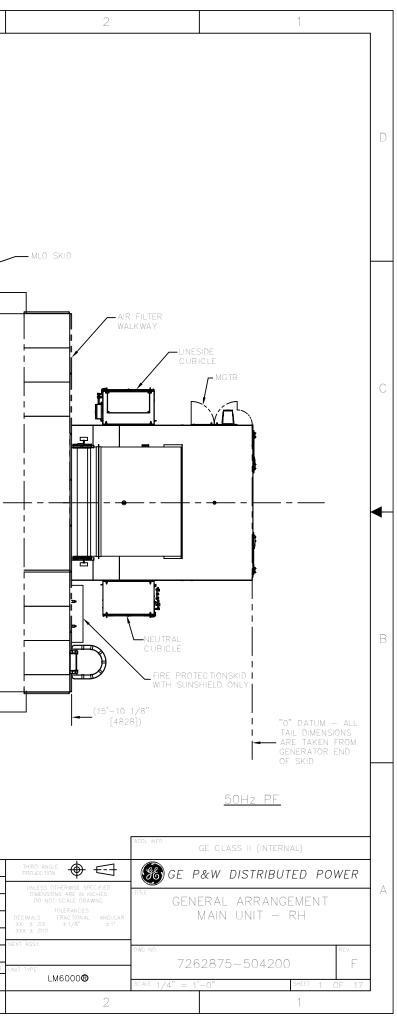



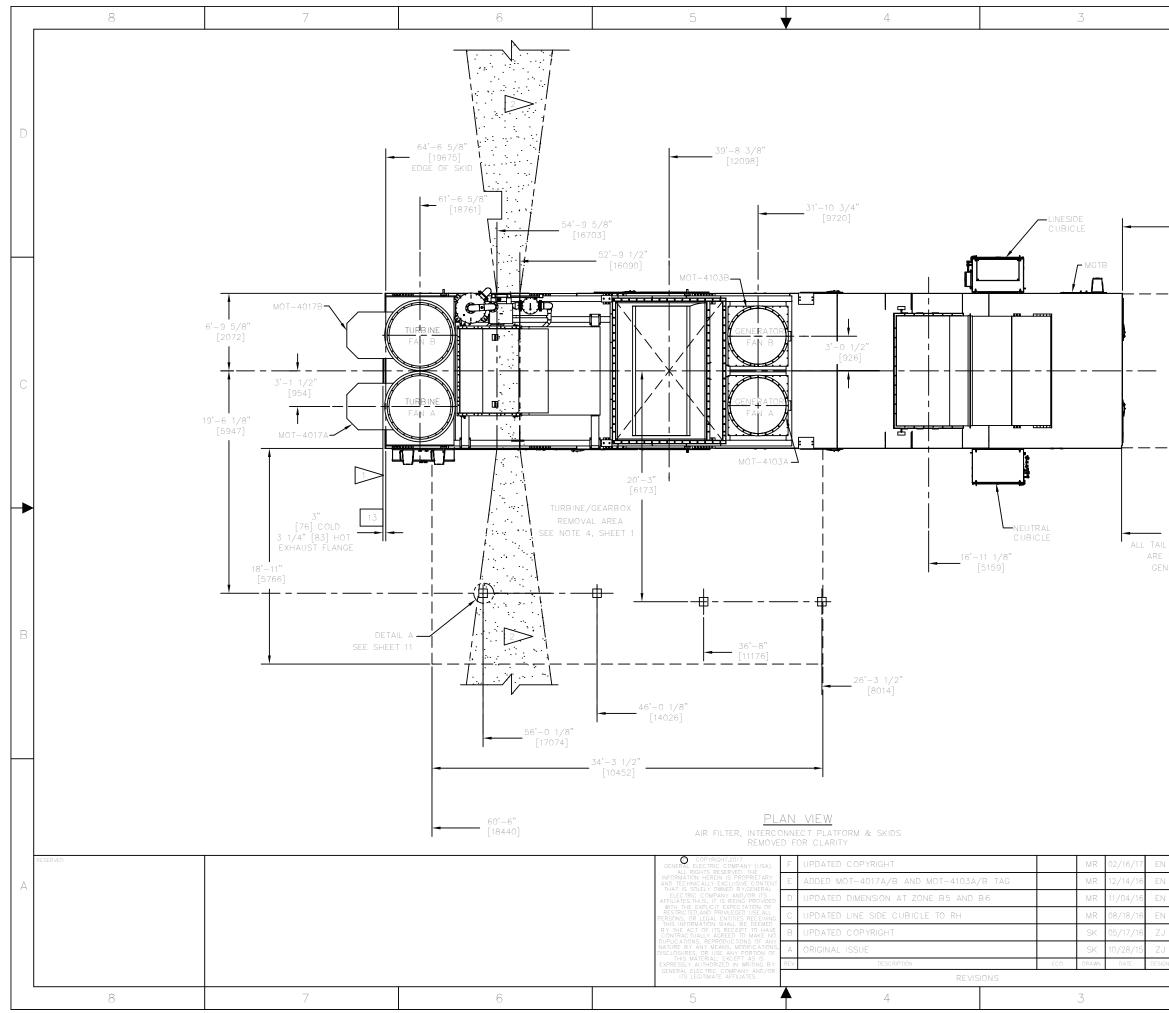
Figure E-9 Predicted incremental impact, NO_x (as NO₂), annual average, 100%, diesel


Figure E-10 Predicted incremental impact, PM, 24-hour, 25%, diesel

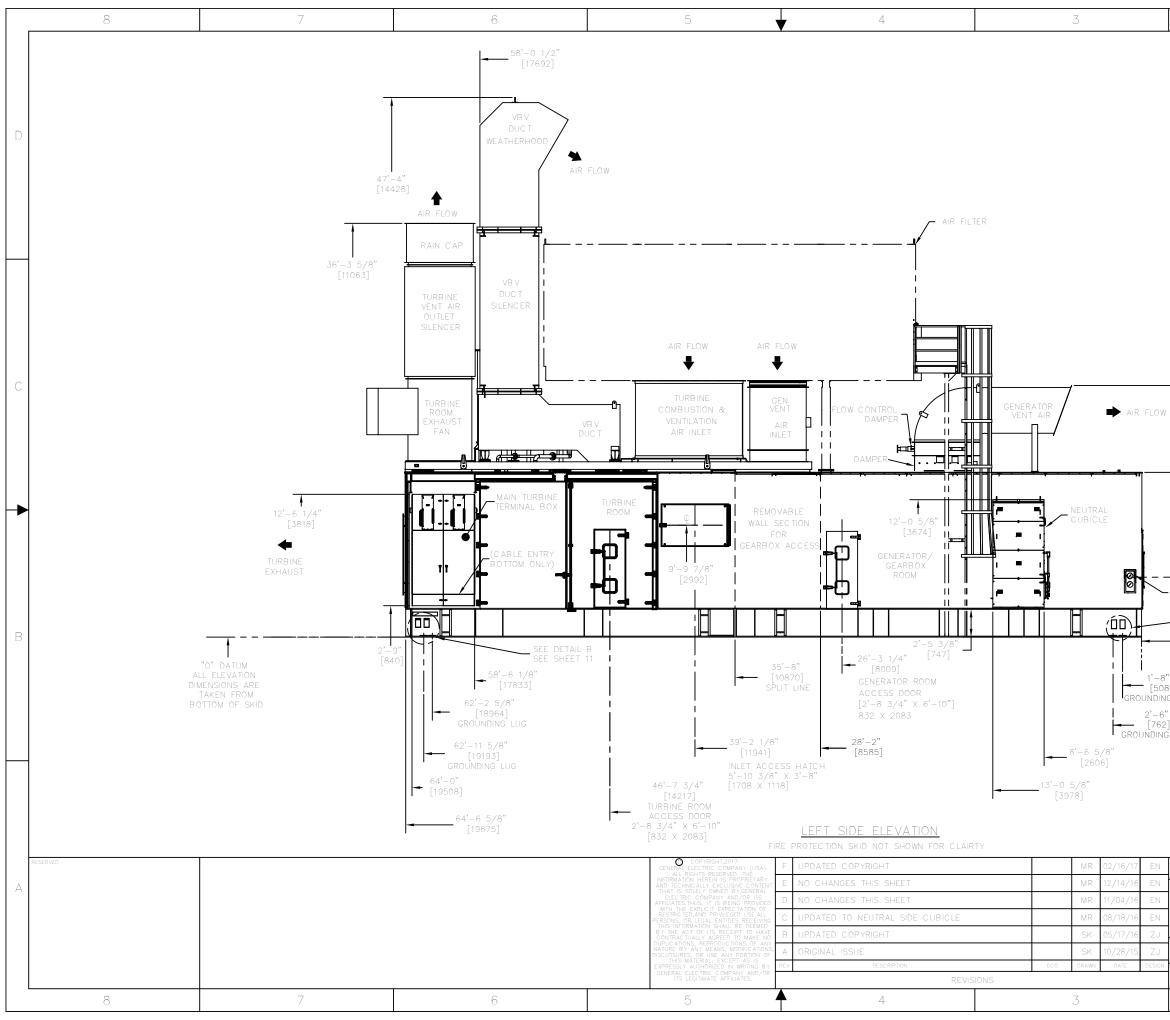
Source: Northstar Air Quality. | Note: Please note that the scale and scale bar used to depict the concentrations may not be linear, and care must be applied when interpreting the illustrated values.

Figure E-11 Predicted incremental impact, PM, annual average, 25%, diesel

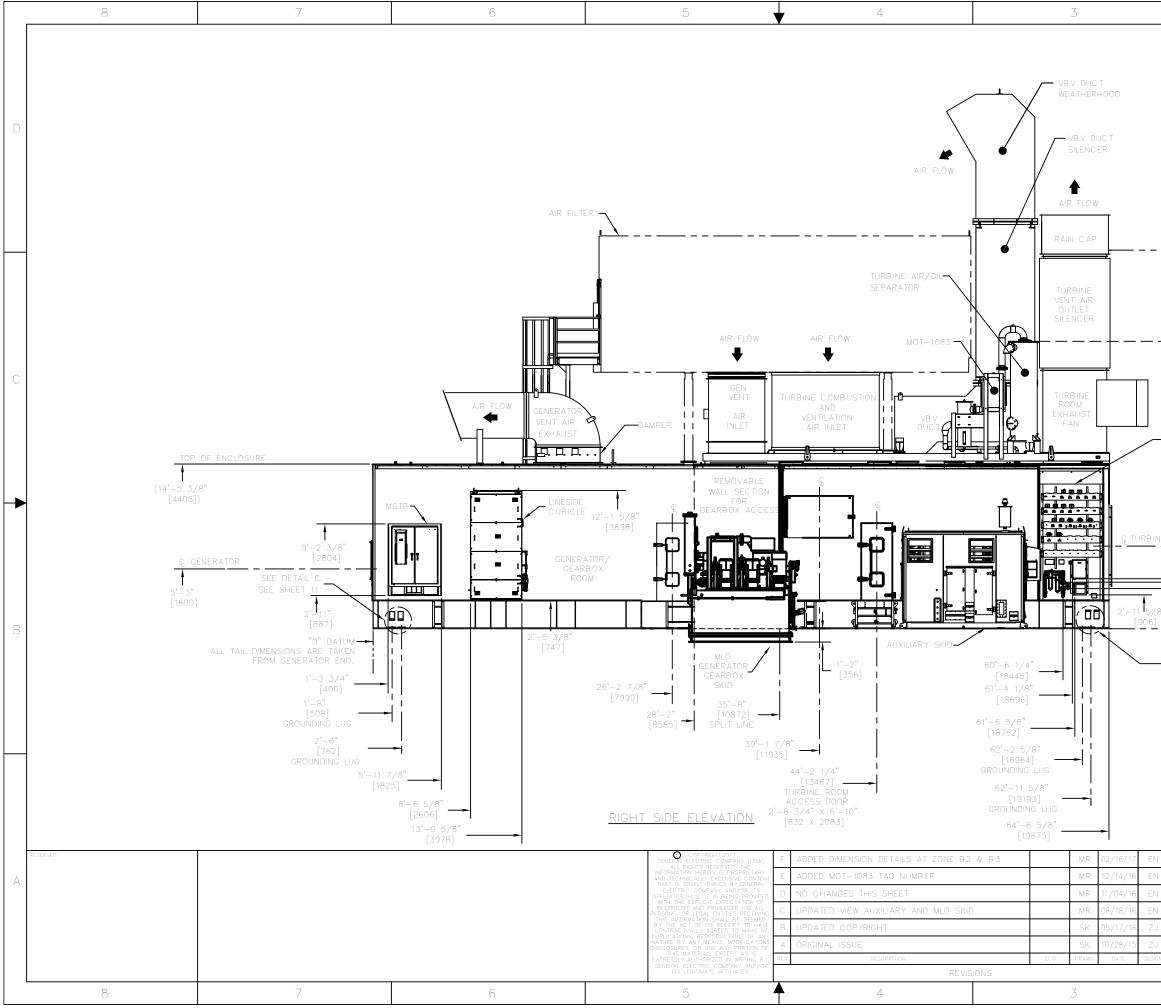

Source: Northstar Air Quality. | Note: Please note that the scale and scale bar used to depict the concentrations may not be linear, and care must be applied when interpreting the illustrated values.

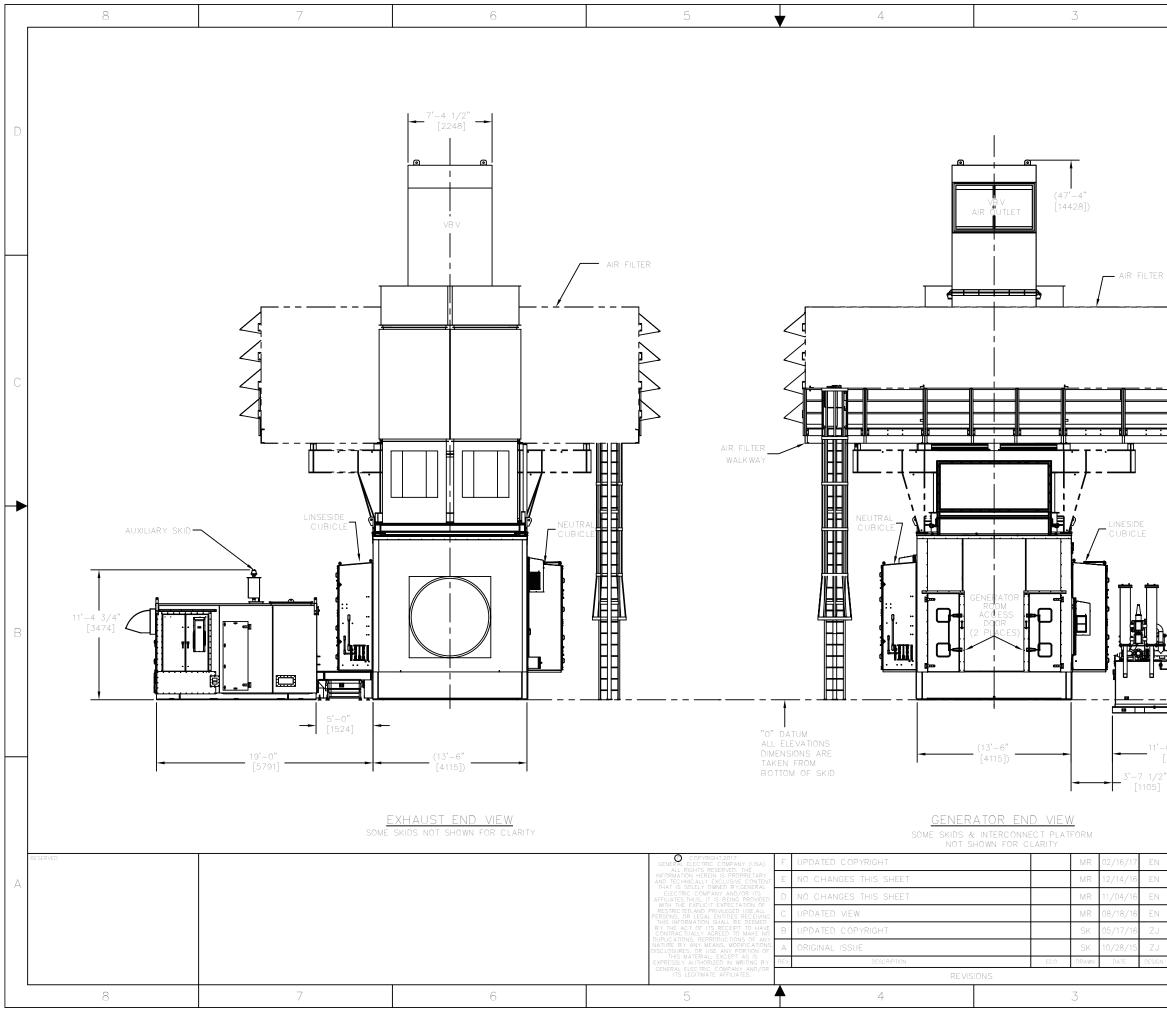


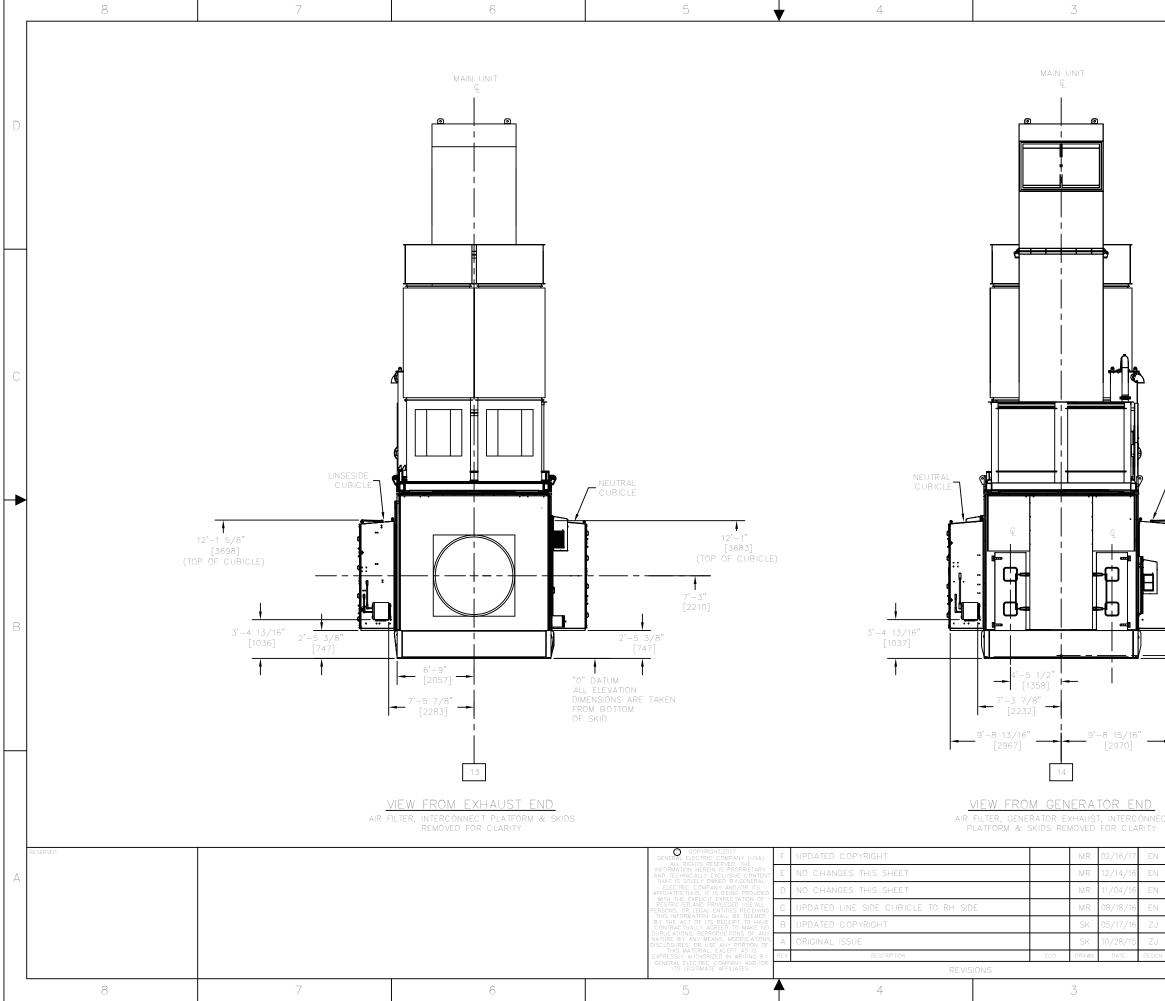
APPENDIX F

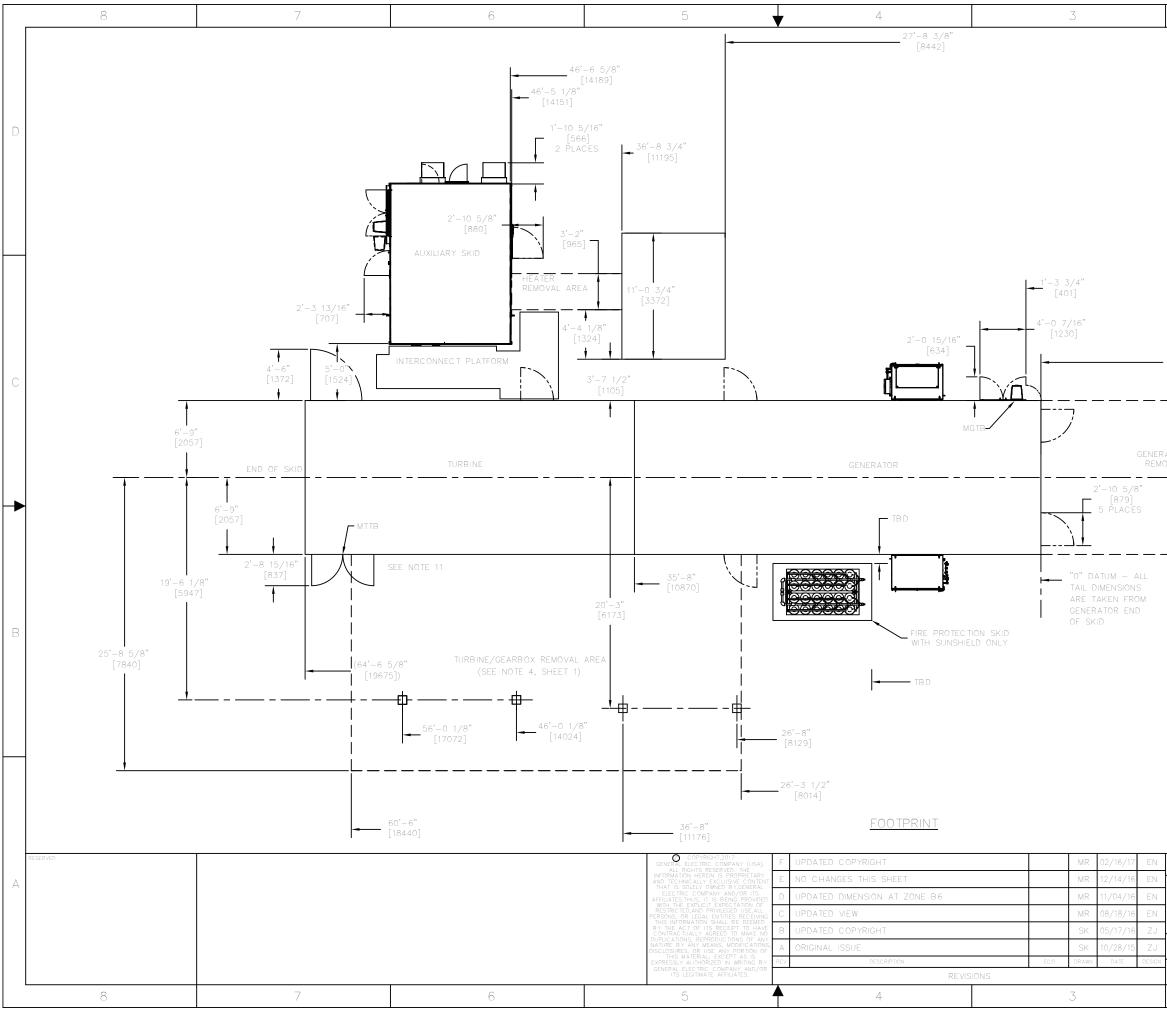

Product Specifications and Drawings

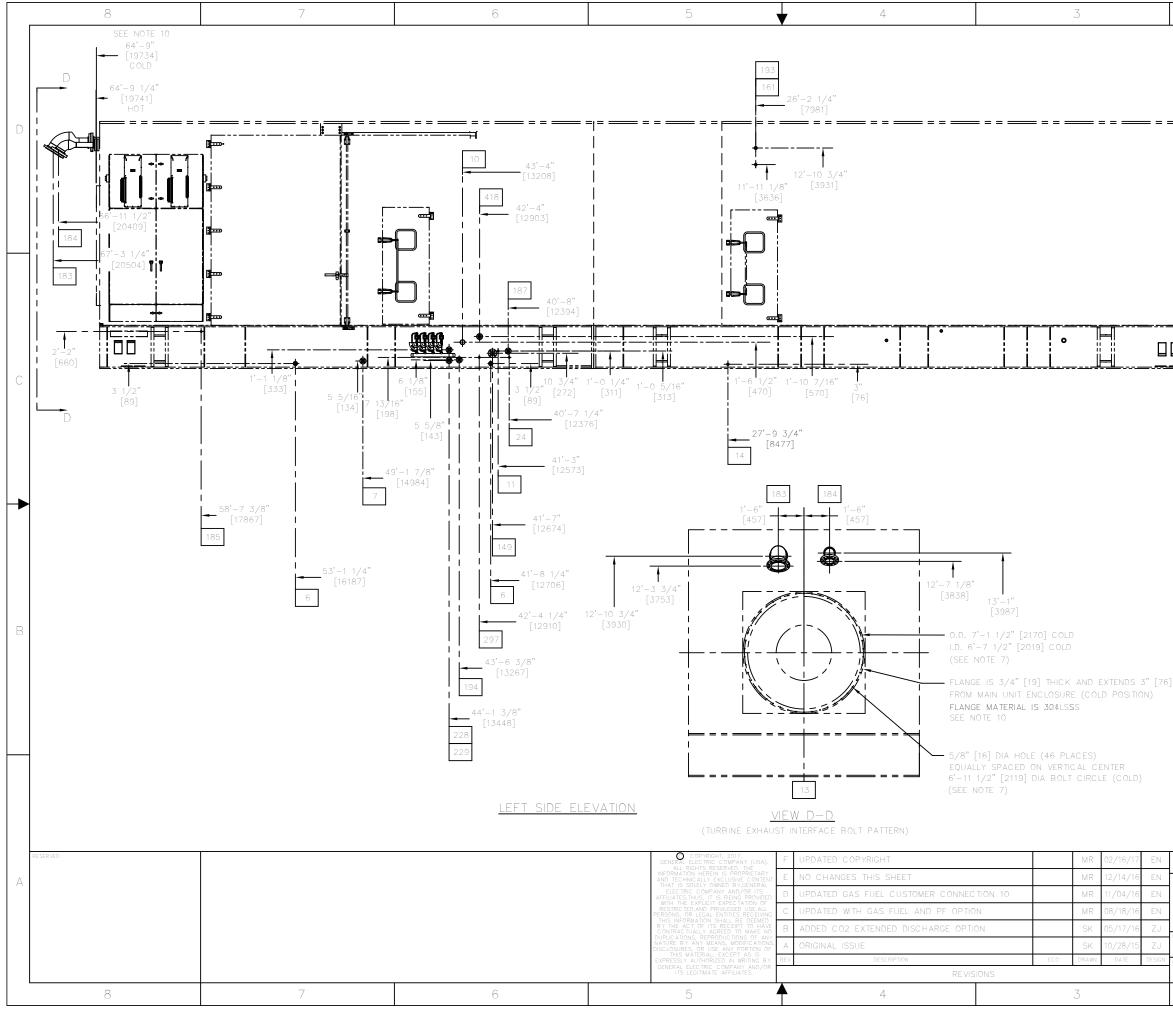
	8	7	6	5	4	3
D	 ADDITIONAL EXTERIOR LIGHTING MAXIMUM LOAD ON EACH ENG 12,000 LBS [5443 kg], (24000 REMOVAL LOAD). MAXIMUM LOA IS 28,000 LBS [12700 kg]. AUXILIARY SKID & FIRE PROTE MUST BE AT THE SAME ELEVA 6. CUSTOMER DRAWING NUMBERS (ORDER NUMBER)-(STANDARD REFERENCED AS X-(STANDARD WHERE X = ORDER NUMBER. PINIG AND/OR TUBING MATEF LEGEND SHALL BE USED BY C DESIGN OF THEIR PLANT INTER 8. MLO SKID FOUNDATION MUST F 9. AIR FILTER SHOWN AS REFERE AIR FILTER DRAWING/SUPPLIER 10. AUXILIARY SKID CONFIGURATIO 	CONNECTIONS ±1/8" [3] ±1/16" [2] TRUE POSITION] ARE SI UNITS AND NLY. EQUIPMENT SHALL BE D USING U.S. CUSTOMARY UNITS. G TO BE SUPPLIED BY CUSTOMER. SINE REMOVAL FOOT PAD IS D LBS [10886 kg] TOTAL ENGINE AD ON EACH GEARBOX REMOVAL PAD CONSIST OF: DRAWING NUMBER), AND ARE D DRAWING NUMBER), AND ARE D DRAWING NUMBER), RIAL SPECIFICATION LISTED IN CONNECTION CUSTOMER AS A RECOMMENDATION IN RCONNECT PIPING SYSTEM. BE 1' - 2" [356] LOWER THAN MAIN UNIT INCE, FOR ACTUAL CONFIGURATION SEE GA 2 DRAWING NUMBER), SARE LOCATED IN X-504218. WHEN OPENING ENGINE REMOVAL DOORS	INTER	AUXILIARY SKID		
в	SAFETY NOTE: CA GEPPLP SHALL NOT BE LIABLE EXCESSIVE FLANGE LOADS OR I DESIGN. FAILURE TO PROVIDE F EXPANSION OR EXCEEDING ALLO MAY RESULT IN DAMAGE TO OR AND ENGINE/EXHAUST SYSTEM IN EXHAUST LEAKS AND ACCEL DIFFUSER ASSEMBLY, IT IS THE TO ALLOW A CONSERVATIVE AW TO ACCOMMODATE INSTALLATIO STACK-UPS FOR THE COMPLET 2 IN THE REMOTE CHANCE OF A	AUTION FOR DAMAGE CAUSED BY INADEQUATE EXPANSION JOINT OR ADEQUATE THERMAL OWABLE FLANGE LOADS R DESTRUCTION OF FASTENERS RELATED HARDWARE RESULTING LERATED WEAR ON THE EXHAUST COUSTOMER'S RESPONSIBILITY MOUNT OF EXPANSION CAPABILITY NOUNT OF EXPANSION CAPABILITY ANDENT SYSTEM. HP ROTOR FAILURE THE ENGINE E ENTIRE FAILURE. IT IS HIGHLY ANENTLY MANNED SPACES BE E HP TURBINE. IT IS ALSO LL POTENTIALLY HAZARDOUS IT (i.e. SHUTOFF VALVES, NC ATED OUTSIDE THE PLANE S: MENT, AIR FILTER MENT, AUXILLARY SKID MENT, GENERATOR/GEARBOX		BINE AUST		
А	RESERVED			COPYRICHT, 2017 CENERAL ELECTRIC COMPANY (USA). ALL RICHTS RESERVED. THE WINFORMATION HEERIN IS PROFREITANY ATHAT IS SOLELY OWNED BY/CENERAL ELECTRIC COMPANY AND/OR ITS AFFULATES. THUS, IT IS BEING PROVIDED WITH THE EXPLOIT EXPECTATION OF RESTRICTED AND PRIVILECED USE ALL PERSONS, CRU-LECAL, ENTITIES EDEVED BY THE ACT OF ITS RECEIPT TO HAVE CONTRACTUALLY ACREED TO MAKE NO DUPILCATIONS, REPRODUCTIONS OF ANY NATURE BY ANY MEANS, MODIFICATIONS, DISCLEMENT, SUPERANCY FACTOR DISCLEMENT AND THE ANY FACTOR EXPRESELY ALITHORIZED IN WRITING BY CENERAL ELECTRIC COMPANY AND/OR ITS LECTIMATE AFFILIATES.	F UPDATED COPYRIGHT E NO CHANGES THIS SHEET D UPDATED LINE SIDE CUBICLE C UPDATED LINE SIDE CUBICLE TO B UPDATED COPYRIGHT A ORIGINAL ISSUE REV DESCRIPTION	PLAN VIEW MR 02/16/17 MR 02/16/17 MR 12/14/16 MR 12/14/16 MR 11/04/16 MR MR NH MR NH MR NR 08/18/16 NR 08/18/16 SK 05/17/16 ECO DRAWN DATE DESIGN

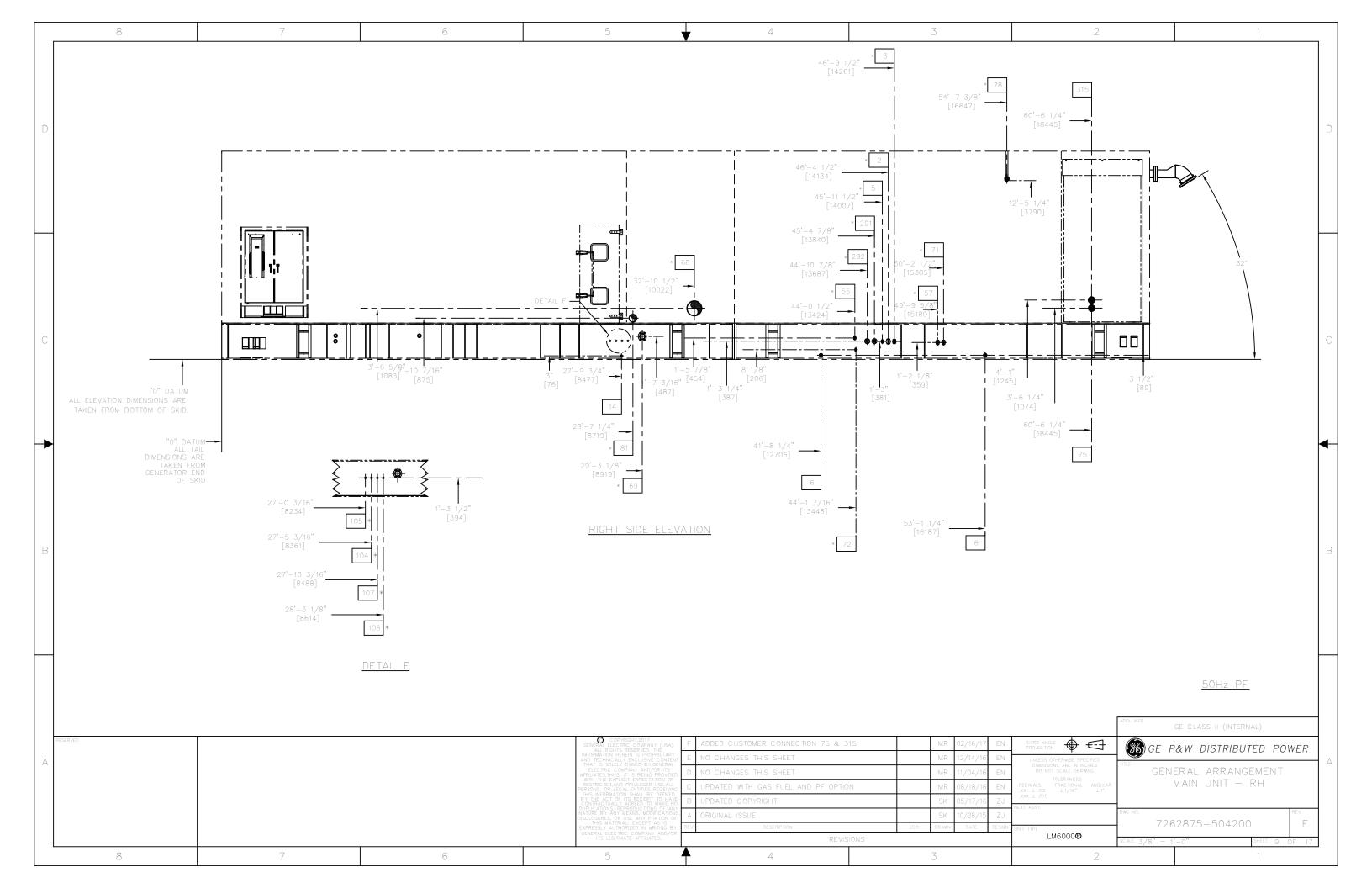



2	1	
25'-0" [7620]		D
REMOVAL AREA	13'-6" [4115]	С
"O" DATUM - DIMENSIONS TAKEN FROM VERATOR END OF SKID		В
THIRD ANGLE PROJECTION UNLESS OTHERWISE SPECIFIED DMENSIONS ARE IN INCHES DO NOT SC ALE DRAMIG TOLERANCES DECIMALIS FRACTIONAL ANCULAR YX ± .03 XX ± .010 NEXT ASSY. INIT TYPE LM60000 ●	ADDLINFO GE CLASS II (INTERNAL) GE CLASS II (INTERNAL) GE P&W DISTRIBUTED POWER TILE GENERAL ARRANGEMENT MAIN UNIT – RH DWG NO. 7262875–504200 SCALE 1/4" = 1'-0"	A

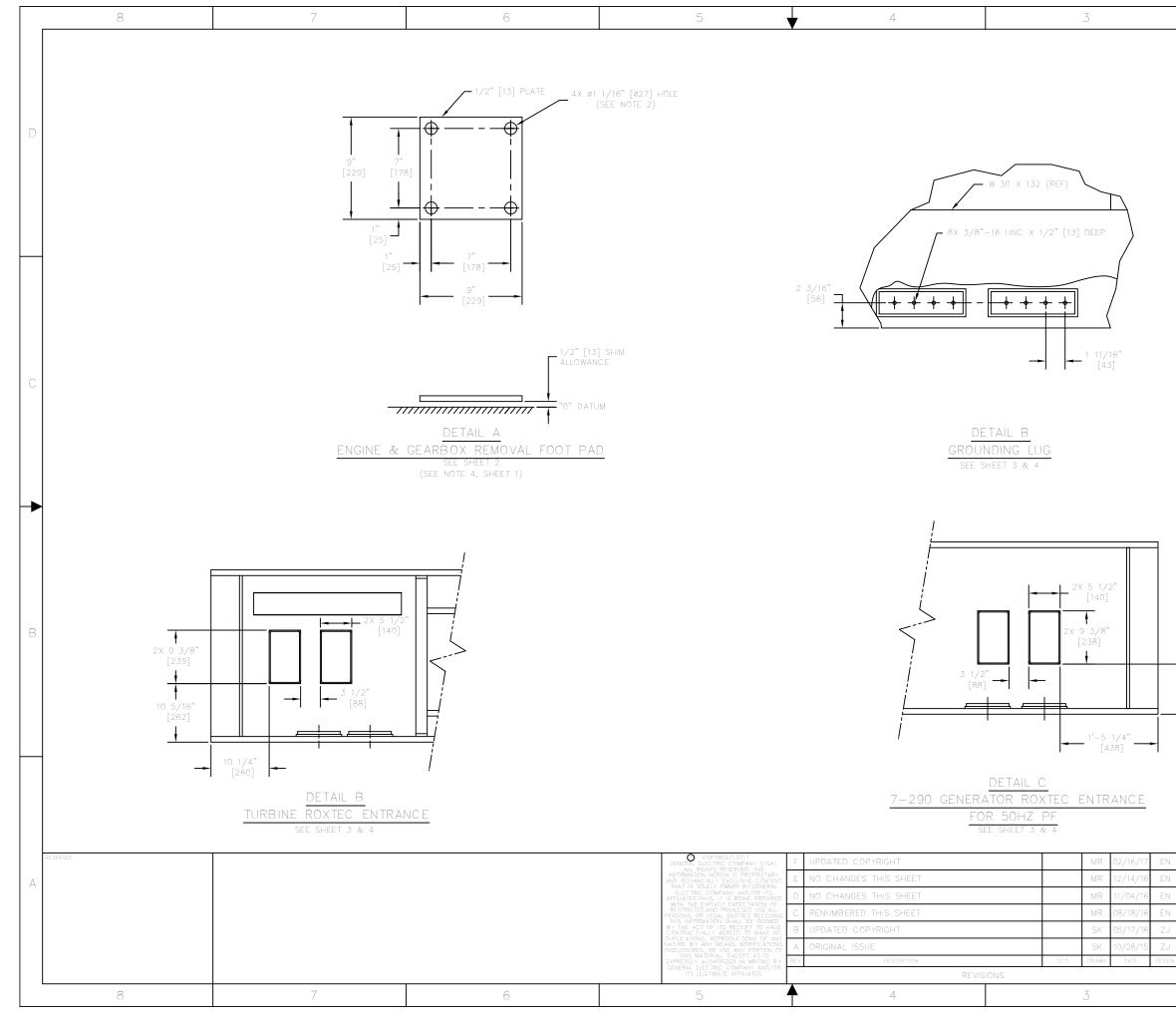

2	1
₩ ^{22'} −0 7/8" W ^[6727]	OF ENCLOSURE 14'-5 3/8" [4405]
GENERATOR GAUGE PANEL SEE SHEET 1 "O" DATUM – ALL TA ARE TAKEN FROM GE OF SKID 8" 08] ING LUG 6" 32] NG LUG	Q GENERATOR 5'-3 1/8" [1602]
I THRD ANGLE PROJECTION UNLESS OTHERWISE SPECIFIED UNLESS OTHERWISE SPECIFIED DO NOT SCALE DRAWING TOLERANCES DECIMALS FRACTIONAL ANGULAR XX ± .010 NEXT ASSY. INIT TYPE LM60000	50Hz PF DL INFO GE CLASS II (INTERNAL) GE P&W DISTRIBUTED POWER GENERAL ARRANGEMENT MAIN UNIT – RH C NO. 7262875–504200 F ALE 1/4" = 1'-0" SHEET 3 OF 17 1


2	1	
		D
8'-0" [2438] 25'-2 1/2" [7685] - TURBINE INSTRUMENT PANEL		С
NE ► TURB INE EXHAUST 3'-6 1/4" 4'-1" 4'-4 8" [1074] [1245] [1 SEE DETAIL B SEE SHEET 11	T'-3" 5/8" "0" DATUM ALL ELEVATION DIMENSIONS ARE TAKEN FROM BOTTOM OF SKID	В
N HPROLETION N UNITESS OTHERWISE SPECIFIED DOMENSIONS ARE IN INCHES DO NOT SCALE DRAWING TOLERANCES DECIMALS TOLERANCES DECIMALS TOLERANCES TOLERANCES TOLERANCES TOLERANCES TOLERANCES TOLERANCES N NEXT ASSY. N UNIT TYPE LM60000 € 2	50Hz PF ADDL INFO GE CLASS II (INTERNAL) OBE P&W DISTRIBUTED POWER TITLE GENERAL ARRANGEMENT MAIN UNIT – RH DIVIS NO. REV. 7262875–504200 SCALE 1/4" = 1'-0" DIVE 4 OF 17 1	А


Image: Second	2	1	
(34'-5,1/2') (10504) (10504) (10504)			D
B 0 3/4" 0 3/4" 1'-2" [356] 50Hz PF ADDL INFO GE CLASS II (INTERNAL) THEO ANGLE PROJECTION INTERATIONAL ANGLER INT TYPE LM60000 SCALE 1/4" = 1'-0"	(34'-5 1/2" [10504])		C
3372] [356] 50Hz PE SOHz PE MDDL INFO GE CLASS II (INTERNAL) THED ANGLE POWER THE CLASS II (INTERNAL) THE CLASS II (INTERNAL) THE CLASS II (INTERNAL) THE CLASS OTHERWISE SPECIFIED DIMENSISA ARE IN INCHES DO NOT SCALE DRAWNG THE GENERAL ARRANGEMENT DIMENSISA ARE IN INCHES DOWO NO. REV. THE DECIMALS FRACTIONAL ANGULAR NWG NO. T262875-504200 F M60000® SCALE 1/4" = 1'-0"			B
LM6000@ SCALE 1/4" = 1'-0" SHEET 5 OF 17	THIRD ANGLE PROJECTION UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES DO NOT SCALE DRAWING TOLEPARCES DECIMALS FRACTIONAL ANGULAR .XXX ± .010 NEXT ASSY.	[356] <u>50Hz PF</u> <u>Ge class II (INTERNAL)</u> <u>Ge p&w distributed power</u> <u>DTLE</u> <u>GENERAL ARRANGEMENT</u> <u>MAIN UNIT – RH</u> WG NO. <u>REV.</u>	A
2 1	LM6000®	SCALE 1/4" = 1'-0" SHEET 5 OF 17	


1	
2	1
LINESIDE CUBICLE	
	E
EC T THIRD ANGLE PROJECTION UNLESS OTHERWISE SPECIFIED DIVENSIONS ARE IN INCHES DO NOT SCALE DRAIMING TOLERANCES DECIMALS FRACTIONAL ANGULAR .XXX ± 0.30 NEXT ASSY.	ADDL INFO GE CLASS II (INTERNAL) GE P&W DISTRIBUTED POWER ITTLE GENERAL ARRANGEMENT MAIN UNIT – RH
LM6000®	$7262875 - 504200 F$ $F = 1' - 0" \qquad SHEET 6 OF 17$ 1

2	1
	D
25'–0" [7620] ERATOR ROTOR MOVAL AREA	C 13'-6" [4115]
	B
ADDL INFO ADDL INFO V UNLESS OTHERWISE SPECIFIED DMENSIONS ARE IN INCHES V UNUESS OTHERWISE SPECIFIED DNOT SCALE DRAWING TOLERANCES V DECIMALS FRACTIONAL ANGULAR XXX ± .030 ± 1/8" ± 1" XXX ± .010 NEXT ASSY. DWG NO.	GE CLASS II (INTERNAL)
I MGOOO®	/4" = 1'-0" SHEET 7 OF 17



	2		1	
		EGEND INDICATES CUS	TOMER CONNECTION.	D
1.	TAKEN FROM B "O" DATUM ALL TAIL DIMEN: FROM GENERATO OTES: MAXIMUM LOAD ON E VERTICAL AND 50 LB COLLECTOR TO OUTLI GROWTH, SEE EXHAU:	DIMENSIONS ARE OTTOM OF SKID. SIONS ARE TAKEN DR END OF SKID. XHAUST FLANGE TO BE S [23 kg] AXIAL. TRANS ET FLANGE IS SOLID. FO ST OUTLET LOCATION DI	SITION FROM EXHAUST R EXPECTED THERMAL MENSIONS.	С
3. 4. 5. 5] 6. 7.	6'-8 1/2" [2045] FR 10: 1 3/16" [11, 24 & 297 14: ALIGNED W LOCATED ON 149: 7'-0 1/4 228: 6'-10 1/2 229: 6'-10 1/2 ALL MAIN UNIT NPT OF FOR CONNECTION 16 FOR CONNECTION 16 FOR CONNECTION AND CONNECTIONS. THOSE USED ON THIS PROJE AN ASTERISK (*) IND "HOT" INTERFACE MA INSULATED AND 304L	MTH CENTERLINE. THE C SAME SIDE AS CONNEC 4" [2140] FROM CENTER 72" [2092] FROM CENTE 72" [2092] FROM CENTE 74" [2092] FROM CENTE 74	T, EXCEPT: ID TO THE INSIDE DEE OF SKID TO THE INSIDE DTHER TWO ARE TION 6. LINE RLINE 6 1/8" [1959] TION 14 AND 161. LUSH WITH PANEL. 10. RANGEMENTS TIONAL TIED ARE NOT RDWARE BY GEPPLP. E EXTERNALLY	В
THIRD PROJE	EXPANSION JOINT SUI FINAL 13 EXHAUST FI ALIGMENT, EXPANSION GROWTH AND ALIGNM I ANCLE ESS OTHERWISE SPECIFIED ENSIONS ARE IN INCHES S FRACTIONAL ANGULAR 03 ±1/8" ±1" C.	ANGE LOCATION MAY V JOINT DESIGN SHOULD ENT APPROXIMATELY 1" GE CLASS GE P&W L GENERAL J	ARY, DEPENDING ON ENGINE ALLOW FOR THERMAL IN ALL DIRECTIONS. 5 II (INTERNAL) DISTRIBUTED POWER ARRANGEMENT JNIT – RH	А

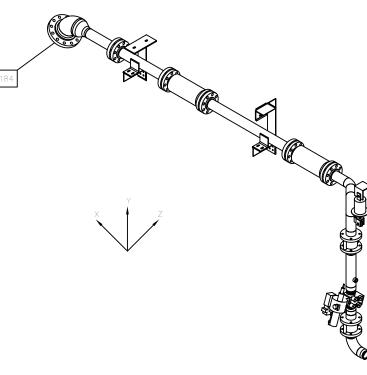
	8	7	6		5	↓	4			3		
	CUSTOMER CONNECT	TION LEGEND:										
	O O O TOMER O OTTREO	HON LEOLIND.		140		0,	–150# RF, TP304 PIPE SCH 40S					
		JPPLY - 1 1/2"-6000# FF, SAE CODE 62,		1+J								
				↑ 101	CO2 – 1 1/4" FNPT	1 3000	/#, CFLG, 30433					
		ETURN $- 1 1/2" - 3000\#$ FF, SAE CODE 61,										
		ASE DRAIN - 1"-3000# FF, SAE CODE 61, "	IP304 PIPE SCH 40S									
		- 2"FNPT 3000#, CPLG, 304SS		183			NNECTION – 10"–150# RF, TP304 PIPE					
	7 EXHAUST DRAIN – 1"-	150# RF, TP304 PIPE SCH 40S		184			ION – 6"–300# RF, TP321 PIPE SCH 10	OS				
				185	INSTRUMENT AIR FOR	r dam	PER RESET – 1/4"FNPT, 304SS					
				187			50# RF, TP304 PIPE SCH 40S					
				* 193			ED DISCHARGE, CO2 INLET – 1/2" NPT	304SS				
				194	COMBUSTOR DRAIN -	- 1"-	150# RF, TP304 PIPE SCH 40S					
	10 GAS FUEL INLET - 3" \	WELDED PIPE, TP304 SCH 40S										
	11 GAS FUEL VENT – 1" W	VELDED PIPE, TP304 SCH 40S										
	13 TURBINE EXHAUST DUC	T CONNECTION – N/A		228	TURBINE LUBE OIL O	DVERB	OARD DRAIN VENT – 1"–150# RF, TP3C	04 PIPE SCH ∠	40S			
\sim	14 GENERATOR/GEARBOX S	SUMP DRAIN – 1"FNPT 3000#, CPLG, 304S	S	229	TURBINE LUBE OIL O	DVERB	0ARD DRAIN - 1"-150# RF, TP304 PIPI	E SCH 40S				
	24 GAS FUEL VENT – 1" W	VELDED PIPE, TP304 SCH 40S										
				* 292	SPRINT SYSTEM DEMI	IINERA	LIZED WATER LPC INLET - 1"150# RF,	TP316 PIPE S	SCH40S			
	* 55 INSTRUMENT AIR SUPPL	Y - 1"-3000# FF, SAE CODE 61, TP304 PIF	PE SCH 40S	297	GAS FUEL VENT - 1	" PIPE	E, TP304 SCH 40S					
	* 57 SCAVENGE LUBE OIL FIL	_TER/COOLER SUPPLY - 1 1/2"-3000# FF,	SAE CODE 61, TP304 PIPE SCH 40S									
	* 68 GEARBOX LUBE OIL RET	TURN LINE – 12" PIPE, TP304 SCH 10S										
	* 69 GENERATOR LUBE OIL S	SUPPLY - 4"-3000# FF, SAE CODE 61, TP3(04 PIPE SCH 40S	* 291	SPRINT SYSTEM DEMI	IINERA	LIZED WATER HPC INLET – 1"150# RF,	TP316 PIPE S	SCH40S			
				315	TURBINE LUBE OIL F	FILTER	SUPPLY - 1 1/2"-150# RF, TP304 PIF	PE SCH 40S				
	* 71 TURBINE LUBE OIL PUM	P SUPPLY – 1 1/2"–3000# FF, SAE CODE	61, TP304 PIPE SCH 40S									
	* 72 WATER WASH SUPPLY -	- 1"-3000# FF, SAE CODE 61, TP304 PIPE	SCH 40S									
	75 TURBINE LUBE OIL HEA	T EXCHANGER SUPPLY – 1 1/2"–150# RF,	TP304 PIPE SCH 40S									
B	* 78 TURBINE LUBE OIL AIR/	/OIL PRE-SEPARATOR RETURN – 1 1/2"-30	00# FF, SAE CODE 61, TP304 SCH 40S									
	* 81 GENERATOR LUBE OIL D	DRAIN LINE – 6" PIPE, TP304 SCH 10S		418	STARTER CLUTCH SE	eal ti	Ell-Tale Drain - 1"-150# rf, tP304	PIPE SCH 405	S			
	* 104 JACKING OIL RETURN -	3/4" COMPRESSION TUBE FITTING, TP304	TUBING 0.065" WT MINIMUM									
	* 105 JACKING OIL RETURN -	3/4" COMPRESSION TUBE FITTING, TP304	TUBING 0.065" WT MINIMUM									
	* 106 JACKING OIL RETURN -	3/4" COMPRESSION TUBE FITTING, TP304	TUBING 0.065" WT MINIMUM									
	* 107 JACKING OIL RETURN -	3/4" COMPRESSION TUBE FITTING, TP304	TUBING 0.065" WT MINIMUM									
	* 124 TURBINE LUBE OIL AIR/	/OIL SEPARATOR RETURN – 1/2" JIC, TP304	TUBING 0.049" WT MINIMUM									
RE	SERVED			INFORMA	COPYRIGHT, 2017, ELECTRIC COMPANY (USA). RIGHTS RESERVED. THE ION HEREIN IS PROPRIETARY		ADDED CUSTOMER CONNECTION 75 & 3	15 DETAILS		MR	02/16/17	7 EN
4				AND TECH THAT IS ELECTR	NICALLY EXCLUSIVE CONTENT SOLELY OWNED BY,GENERAL IC COMPANY AND/OR ITS		NO CHANGES THIS SHEET			MR MR	12/14/16 11/04/16	6 EN 6 EN
				WITH TH RESTRIC PERSONS,	THUS, IT IS BEING PROVIDED E EXPLICIT EXPECTATION OF ED,AND PRIVILEGED USE.ALL OR LEGAL ENTITIES RECEIVING IRMATION SHALL BE DEEMED		JPDATED WITH GAS FUEL AND PF OPTIO	N		MR	08/18/16	6 EN
				B Y THE A C ONTRAC DUPLICATIO	CT OF ITS RECEIPT TO HAVE TUALLY AGREED TO MAKE NO INS. REPRODUCTIONS OF ANY		ADDED CO2 EXTENDED DISCHARGE OPTIC	ИС		SK	05/17/16	6 ZJ
				DISCLOSUF	ANY MEANS, MODIFICATIONS, ES, OR USE ANY PORTION OF MATERIAL; EXCEPT AS IS AUTHORIZED IN WRITING BY ELECTRIC COMPANY AND/OR	A C REV	DRIGINAL ISSUE Description		EC 0	SK drawn	10/28/15 Date	DESIGN
				GENERAL ITS	ELECTRIC COMPANY AND/OR LEGITIMATE AFFILIATES.		REVISI	IONS				
	8	7	6		5	♠	4			3		

2	1	
BY GEPPLP.	ICATES CONNECTION HARDWARE NECTION FLANGES MAXIMUM ALLOWABLE AWING 806125.	D
		С
		В
THRD ANGLE PROJECTION UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHESS DO NOT SCALE DRAWNG TOLERANCES DECIMALS FRACTIONAL ANGULAR XX ± 0.3 XX ± 0.3 XX ± 1/8" ±1" EXT ASSY. WI TYPE LM60000 2	50Hz PF GE CLASS II (INTERNAL) GE CLASS II (INTERNAL) GE P&W DISTRIBUTED POWER TLE GENERAL ARRANGEMENT MAIN UNIT – RH WC NO. 7262875–504200 F CALE NONE PHEET 10 OF 17 1	А

2		1		
NOTES: 1. all anchoring ha 2. bolt hole tolerat	RDWARE TO BE NCE ± 1/8"[3]	SUPPLIED BY CUSTOMER , TRUE POSITION.		D
				С
8 13/16" [224]				В
THIRD ANGLE PROJECTION UNLESS OTHERWISE SPECIFIED DMENSIONS ARE IN INCHES DO NOT SCALE DRAWING TOLERANCES DECUMALS SFRACTONAL ANGULAR .XX ± .010 NEXT ASSY. UNIT TYPE LMEGODO® 2	GE P	ge class II (Internal) 2 &W DISTRIBUTED ERAL ARRANGEME MAIN UNIT – RH 52875–504200 3° (MAR) 1	EN T rev. F	A

8	7	6	5	4	3
---	---	---	---	---	---

	LOAD CASE	FORCE-X Ibs	FORCE-Y Ibs	FORCE-Z Ibs	MOMENT- X ft-Ibs	MOMENT- Y ft-Ibs	MOMENT- Z ft-Ibs
	OPERATING LOAD	1314	-273	-16	70	-43	-915
CDP	SEISMIX X-0.5g	115	1	-1	0	-1	-67
	SEISMIX Z-0.5g	0	0	59	9	10	-2
	OPERATING LOAD	4596	-340	-8	130	- 37	-1629
8TH STAGE	SEISMIX X-0.5g	114	-9	-31	12	-51	-34
	SEISMIX Z-0.5g	0	0	123	-53	138	1

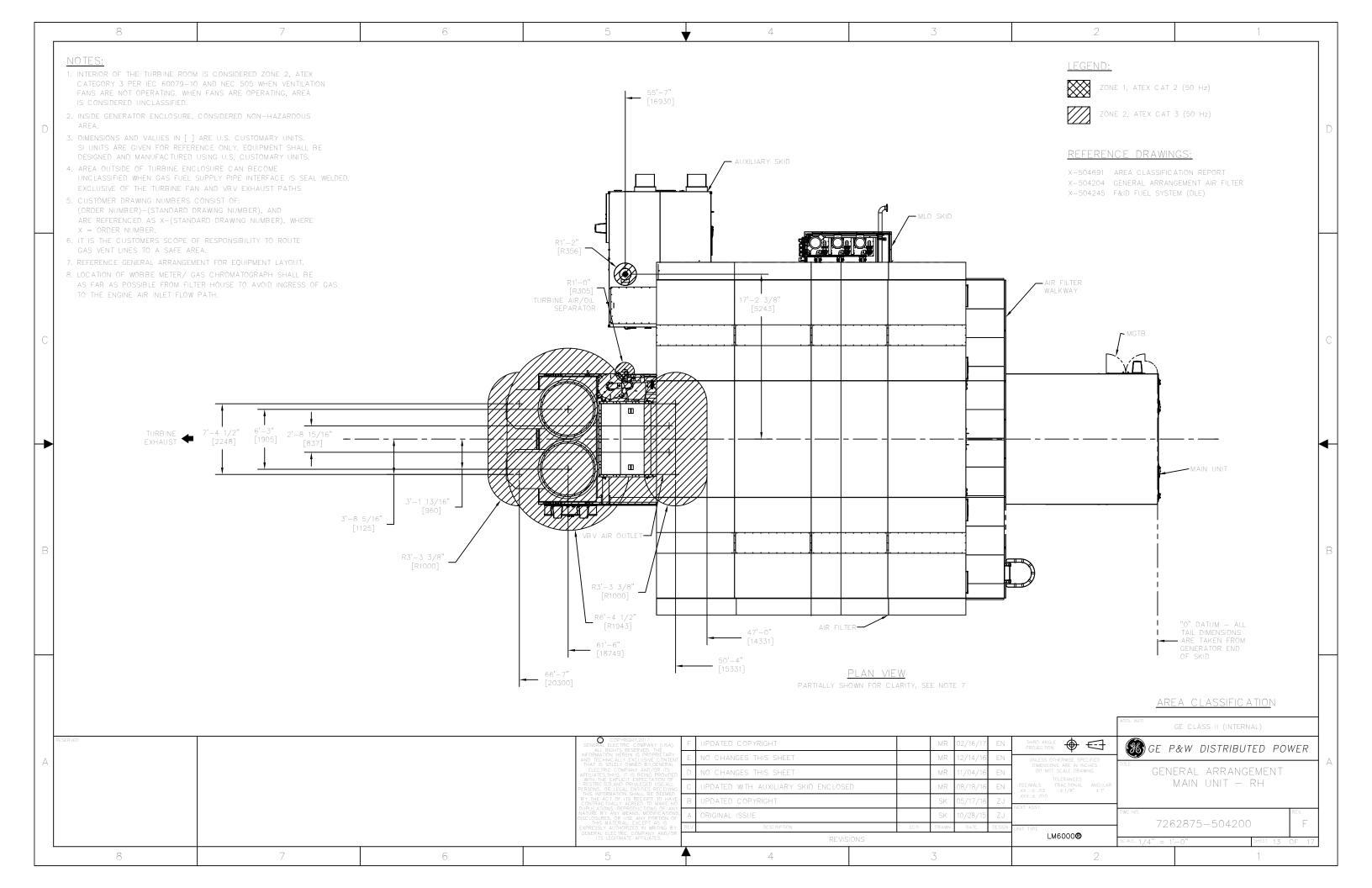

LOADS ON CUSTOMER CONNECTIONS

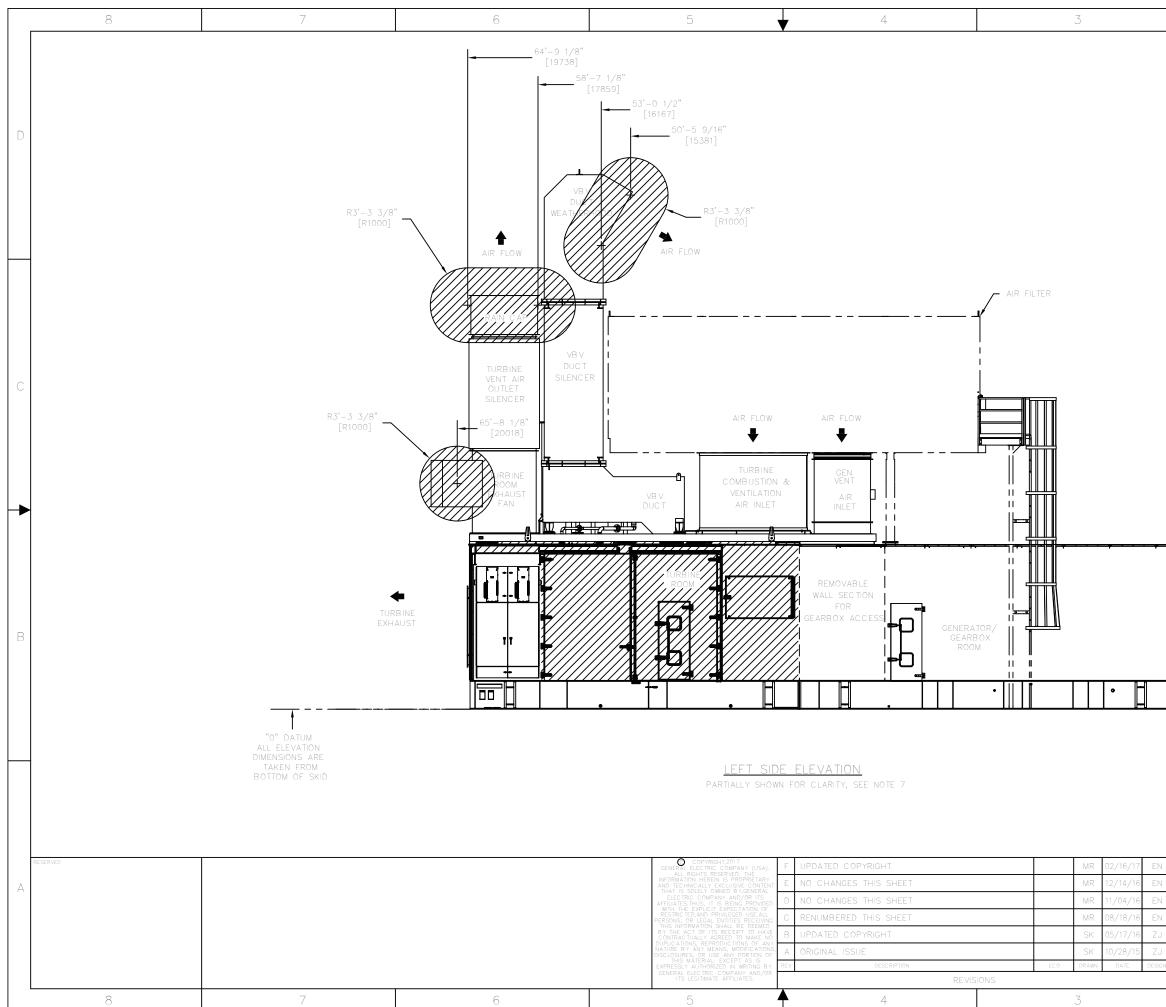
1. THESE ARE FORCES EXERTED AT CUSTOMER CONNECTIONS BY AERO PIPING. CUSTOMER NEEDS TO CONSIDER THESE FORCES IN THEIR DESIGN.

THESE ARE NOT THE ALLOWABLE LOADS AT GE FLANGES. 2. OPERATING LOAD IS RESULT OF TEMPERATURE, PRESSURE AND WEIGHT OF THE SYSTEM. 3. FY OPERATING LOAD IS THE WEIGHT OF THE SYSTEM EXERTED ON THE CUSTOMER CONNECTION.

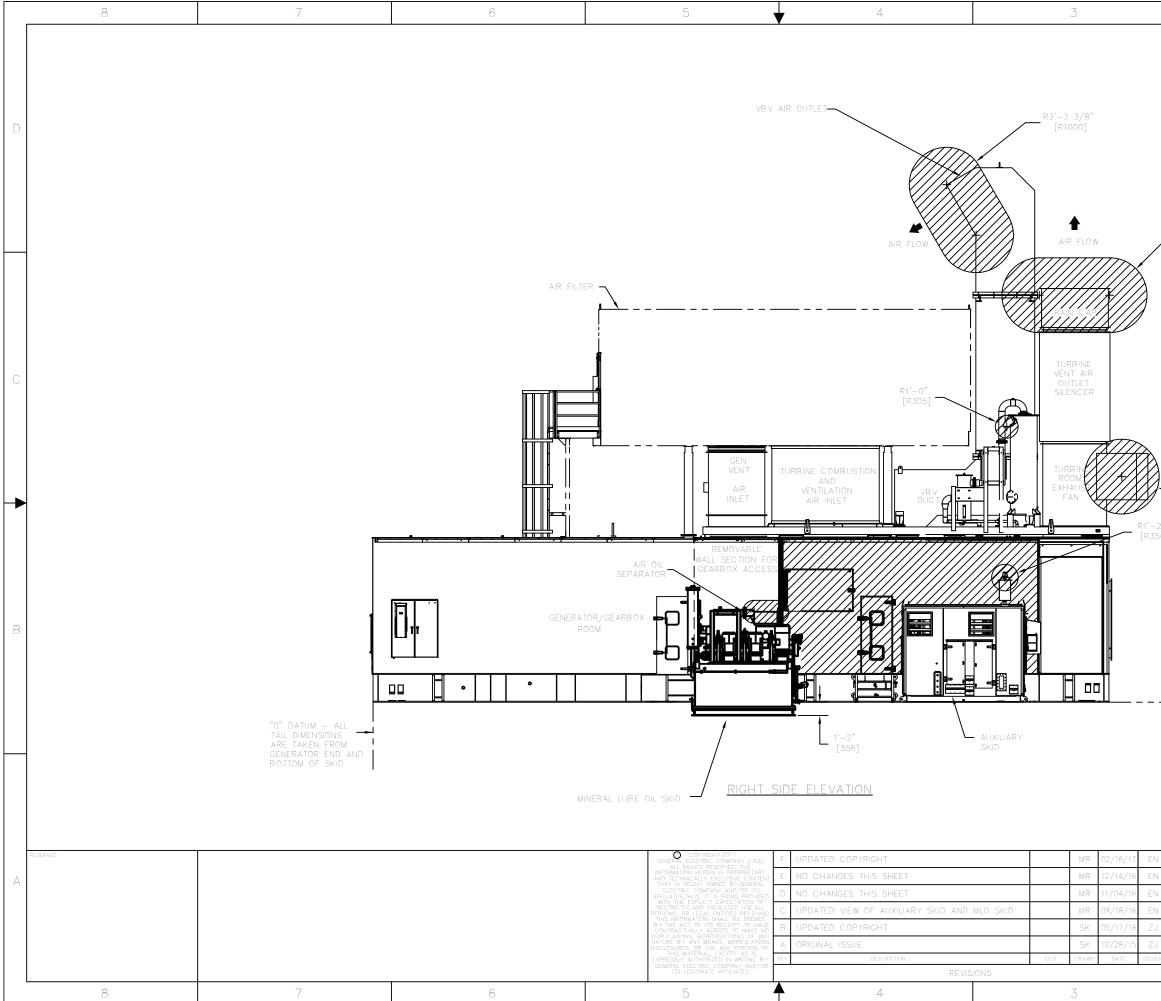
4. CUSTOMER SHOULD INCLUDE THE VERTICAL SEISMIC LOAD EFFECT EV = +/-0.2 SDS D = +/-0.24 D in

CONNECTION DESIGN PER ASCE 7-10 SECTION 12.4.

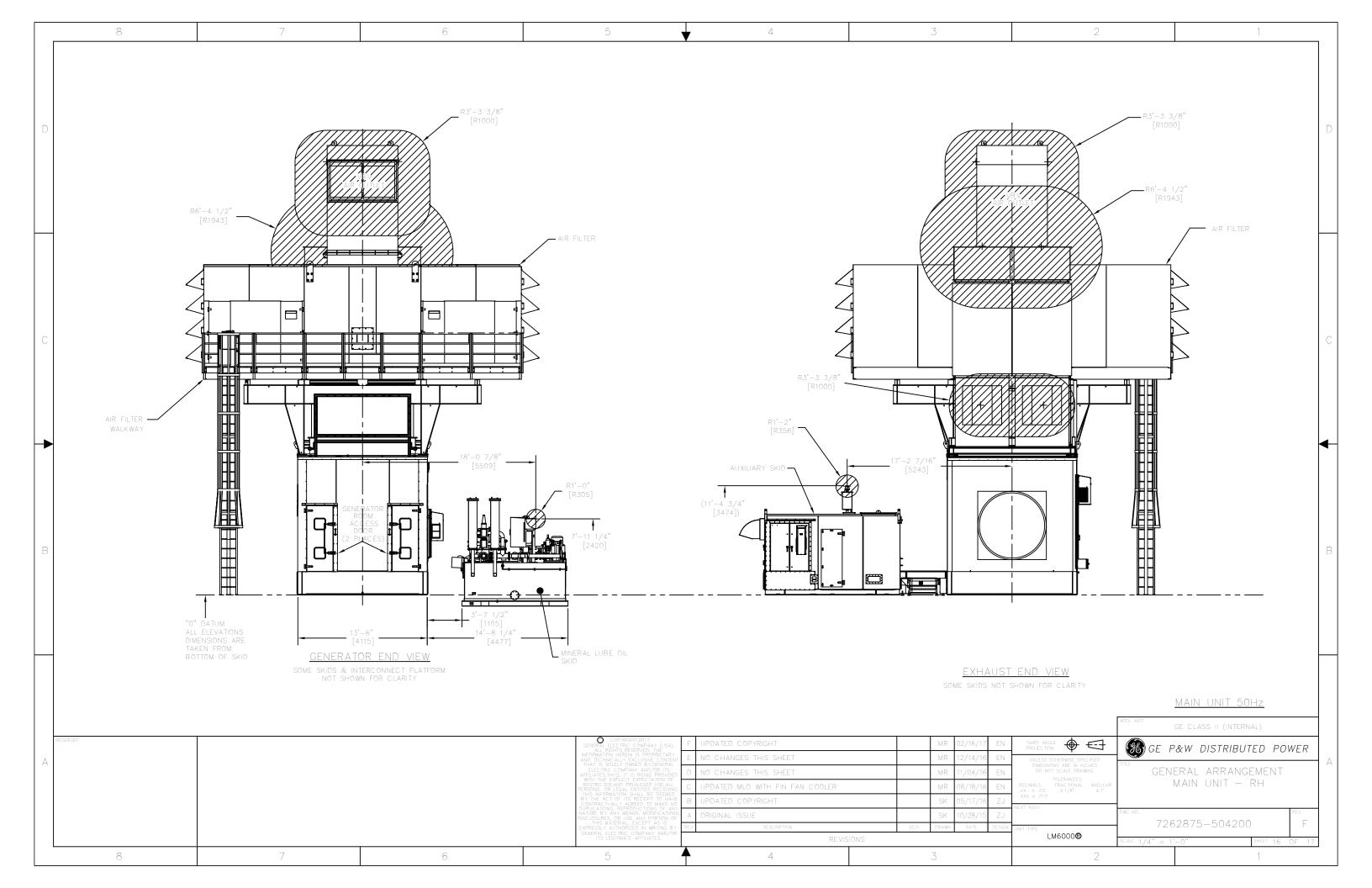


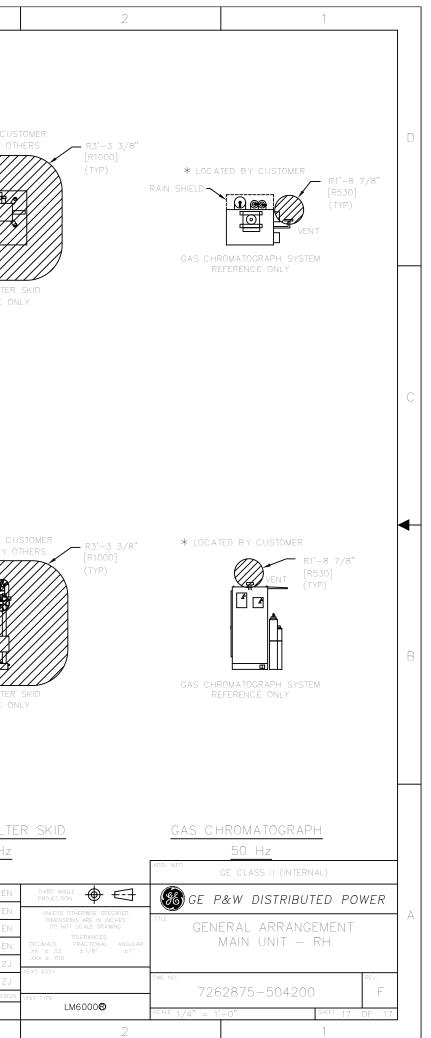

CDP BLEED

8TH STAGE BLEED


	RESERVED			COPYRIGHT,2017 GENERAL ELECTRIC COMPANY (USA). ALL RIGHTS RESERVED. THE					
4	Д			ALL RIGHTS RESERVED. THE INFORMATION HEREIN IS PROPRIETARY AND TECHNICALLY EXCLUSIVE CONTENT THAT IS SOLELY OWNED BY,GENERAL					
				AFTIS SUBLET OWNED BIJGENAL ELECTRIC COMPANY AND/OR ITS AFFILIATES,THUS, IT IS BEING PROVIDED WITH THE EXPLICIT EXPECTATION OF	F UPDATED COPYRIGHT		MR	02/16/17	EN
				WITH THE ZAPILCT HATTON OF RESTRICTED, AND PRIVILEGED USE. ALL PERSONS, OR LEGAL ENTITIES RECEIVING THIS INFORMATION SHALL BE DEEMED	E NO CHANGES THIS SHEET		MR	12/14/16	EN
				BY THE ACT OF ITS RECEIPT TO HAVE CONTRACTUALLY AGREED TO MAKE NO DUPLICATIONS, REPRODUCTIONS OF ANY	D NO CHANGES THIS SHEET		MR	11/04/16	EN
				NATURE BY ANY MEANS, MODIFICATIONS, NATURE BY ANY MEANS, MODIFICATIONS, DISCLOSURES, OR USE ANY PORTION OF THIS MATERIAL; EXCEPT AS IS	C ADDED THIS SHEET		MR	08/18/16	EN
				EXPRESSLY AUTHORIZED IN WRITING BY	REV DESCRIPTION	EC O	DRAWN	DATE	DESIGN
				GENERAL ELECTRIC COMPANY AND/OR ITS LEGITIMATE AFFILIATES.	REV	ISIONS			
	8	7	6	5	4		3		

2	1	
Z		
		D
	-	
		С
		╉
$\langle $		
B		В
	-	
1	addl info GE CLASS II (INTERNAL)	
THIRD ANCLE	GE CLASS II (INTERNAL)	
UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES DO NOT SCALE DRAWING TOLEBANCES	GENERAL ARRANGEMENT	A
V DECIMALS FRACTIONAL ANGULAR .XX ± 0.3 ± 1/8" ± 1' .XXX ± 0.10	MAIN UNIT – RH	
GN UNIT TYPE	оже но. 7262875-504200 F	
LM6000®	SCALE 3/4" = 1'-0" SHEET 12 OF 17	




2		1	
			D
			С
	TUM — ALL TA Aken from gen D		В
THIRD ANCLE PROJECTION UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES DO NOT SCALE DRAWING TOLERANCES DECIMALS FRACTIONAL ANGULAR .XX ± .0.10 NEXT ASSY. UNIT TYPE LM60000	ADDL INFO GE P GENE DWG NO.	EA CLASSIFICATIO ge class II (INTERNAL) &W DISTRIBUTED ERAL ARRANGEME MAIN UNIT – RH 52875–504200 –0" [94687 1	POWER A

2	1	
R3'-3 3/8" [R1000]		D
		С
R3'-3 3/8" [R1000] 2" 56]		◀-
➡ TURBINE EXHAUST	- M	В
ALL ELEV DIMENSIOI TAKEN FF BOTTOM	NS ARE Rom	A
	DWG NO. 7262875-504200 F SCALE 1/4" = 1'-0" SHEET 15 OF 17 1	

	8	7	6	5		4	3
		, , , , , , , , , , , , , , , , , , ,	0	0		1	
D							* LOCATED BY CUS
							SUPPLIED BY OTH
							(//////////////////////////////////////
	4						
							GAS FUEL FILTER
							REFERENCE ON
С							
	•						
							* LOCATED BY CU SUPPLIED BY O
В							
							GAS FUEL FILTER Reference on
	-						
							GAS FUEL FILTE
							<u>50 Hz</u>
		T					
	RESERVED			GENERAL ELECTRIC COMPANY (US ALL RIGHTS RESERVED. THE	A). F	UPDATED COPYRIGHT	MR 02/16/17 EN
А				COPYRIGHIZOTY GRIERAE ELECTRIC COMPANY (US ALL RIGHTS RESERVED THE INFORMATION HEREIN IS PROPRICT AND TECHNICALLY EXCLUSIVE CON THAT IS SOLELY OWNED BY GENEP ELECTRIC COMPANY AND/OR IT AFFILIATES.THUS, IT IS BEING PROV WITH THE EXPLOIT EXPECTATION RESTRICTED, AND PRIVILECED USL. PERSONS, OR LEGAL ENTITES RECEI THE THE EXPLOYED AND PRIVILECED USL. PERSONS, OR LEGAL ENTITES RECEI THE THE EXPLOYED AND PRIVILECED USL. DUPLICATIONS, REPRODUCTIONS OF CONTRACTUALLY A GREED TO MAKE DUPLICATIONS, REPRODUCTIONS OF NATURE BY ANY MEANS, MODIFICA DISCLOSURES, OR USE ANY PORTION THIS MATERIAL; EXCEPT AS IS EXPRESSED AUTHORIZED IN WRITING GEVERAL ELECTRIC COMPANY AND ITS LEGITIMATE AFFILIATES.	AL	NO CHANGES THIS SHEET	MR 12/14/16 EN
				AFFILIATES.THUS, IT IS BEING PROV WITH THE EXPLICIT EXPECTATION RESTRICTED AND PRIVILEGED USE		NO CHANGES THIS SHEET UPDATED WITH GAS CHROMATOGRAPH & (MR 11/04/16 EN GAS FILTER MR 08/18/16 EN
				PERSONS, OR LEGAL ENTITIES RECEI THIS INFORMATION SHALL BE DEEN BY THE ACT OF ITS RECEIPT TO H		UPDATED WITH GAS CHROMATOGRAPH & C	SAS FILTER MR 08/18/18 EN SK 05/17/16 ZJ
				CUNTRACTUALLY AGREED TO MAKE DUPLICATIONS, REPRODUCTIONS OF NATURE BY ANY MEANS, MODIFICAT DISCLOSURES, OR USE ANY DOBTION	ANY IONS, A	ORIGINAL ISSUE	SK 10/28/15 ZJ
				THIS MATERIAL; EXCEPT AS IS EXPRESSLY AUTHORIZED IN WRITING GENERAL FLECTRIC COMPANY AND	BY RE	/ DESC RIPTION	ECO DRAWN DATE DESIGN
			r	ITS LEGITIMATE AFFILIATES.		REVISIO	NS

Performance By: Project:	PERFORMANC Version 1.2.10 Bu Not Found Not Found Estimated Engi	ilt: 2017-07-17 2	22:35 UTC	GUARANTEI	т	ime: (20/07/2017 30:48:28 Y												
Engine: Model: Options: Generator	LM6000 PF-SPRINT-25 N/A BDAX 7-290ER	PF-SPRINT-:I	PF-SPRINT-: N/A	PF-SPRINT-:P	PF-SPRINT-:F	F-SPRINT-	PF-SPRINT-:I	PF-SPRINT-:F	F-SPRINT-:P	F-SPRINT-: F	PF-SPRINT-:	PF-SPRINT-:P	PF-SPRINT-:P	F-SPRINT-:P	F-SPRINT-P	PF-SPRINT-:P	F-SPRINT-:	PF-SPRINT-:P	/A
Frequency,Hz Voltage,kV	50	50	50 11	50 11	50 50	50 11	50 11	50 50	50 11	50 11	50 11	50 51	50 50	50 11	50 50	50 50	50 11	50 50	50 11
PF	0.8		0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Case Ambient Conditions Dry Bulb Temp., °C	100		102 15	103 15	104 15	105 15	106 15	107 15	108 15	109 15	110 15	111 15	112 15	113 15	114 15	115 15	116 15	117 15	118 15
Wet Bulb Temp., °C Relative Humidity, %	10.82	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60	10.82 60
Elevation a.s.l., m Barometric Press., kPa	0 101.325		0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325	0 101.325
Pressure Losses Inlet Press. Loss, mmH2O Exh. Press. Loss, mmH2O Volute Loss, mmH2O	101.6 152.4 112.73	152.4	101.6 152.4 109.53	101.6 152.4 107.08	101.6 152.4 102.33	101.6 152.4 91.53	101.6 152.4 86.01	101.6 152.4 76.62	101.6 152.4 70.8	101.6 152.4 71.56	101.6 152.4 71.98	101.6 152.4 72.02	101.6 152.4 72.08	101.6 152.4 72.11	101.6 152.4 72.15	101.6 152.4 72.2	101.6 152.4 72.22	101.6 152.4 72.1	101.6 152.4 72.13
GTG Load, % Gen. Output, Gross, kW HR, kJ/(kW*h)	100 47733 8738	95 45346	90 42960 8943	85 40573 9157	80 38186 9346	75 35800 9249	70 33413 9431	65 31026 9616	60 28640 9871	55 26253 10249	50 23866 10757	45 21480 11509	40 19093 12425	35 16706 13427	30 14320 14437	25 11933 15922	20 9547 18069	15 7160 20641	10 4773 28262
Comp. Inlet Temp., °C	15		15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Fuel Flow Fuel Number Fuel Name	801-577 Fuel with sulfur	801-577 8 Fuel with sulful																	01-577 uel with sulfur
Fuel LHV, kJ/kg Heat Input, MW	44173 115.9	44173	44173 106.7	44173 103.2	44173 99.1	44173 92	44173 87.5	44173 82.9	44173 78.5	44173 74.7	44173 71.3	44173 68.7	44173 65.9	44173 62.3	44173 57.4	44173 52.8	44173 47.9	44173 41.1	44173 37.5
Fuel Flow, kg/h Vol. Fuel Flow, Nm3/hr	9441.7 11214.7	10719.1	8697.4 10330.6	8410.4 9989.7	8079.4 9596.6	7496.1 8903.7	7133.8 8473.4	6753.9 8022.1	6400.1 7602	6091.4 7235.3	5812.2 6903.6	5596.6 6647.6	5370.3 6378.8	5078.3 6031.9	4680.2 5559.1	4301.2 5109	3905 4638.3	3345.7 3973.9	3053.9 3627.4
Fuel Temp., °C	27 DLE		27 DLE	27 DLE D	27 DLE [27 DLE	27 DLE I	27 DLE D	27 ILE D	27 DLE [27 DLE I	27 DLE C	27 DLE D	27 LE D	27 DLE D	27 DLE D	27 DLE I	27 DLE D	27 LE
Sprint Location	LPC	LPC I	LPC	LPC L	.PC C)FF (DFF (OFF C	FF C	FF (OFF (OFF C	OFF C	FF C	OFF C	OFF C	FF (OFF C	FF
Sprint Water Flow, kg/h Sprint Water Temp., °C Exhaust Parameters	4220.7 15.6		4220.7 15.6	4220.7 15.6	4220.7 15.6	0 15.6	0 15.6	0 15.6	0 15.6	0 15.6	0 15.6	0 15.6	0 15.6						
Exhaust Temp., °C Exhaust Flow, kg/s	457.07 132.3	443.54 131.1	436.7 129.9	442.66 125.2	449.38 119.4	452.05 116.8	463.26 108.8	473.01 101.9	482.07 95.8	490.59 90.7	495.76 87.4	490.74 88.2	494.24 86.7	495.33 84	486.55 80.5	482.6 76.3	475.22 72.3	445.6 67.2	448.25 63.9
Energy (Ref 0R), kW Energy (Ref T2), kW Exhaust stack exit	103154 63593		98128 58881	95457 57311	91960 55590	89431 54108	84768 51856	80503 49700	76719 47753	73524 46104	71362 44502	71389 43028	70500 41753	68358 40017	64617 37573	60897 35361	56984 32901	50697 29224	48322 27266
temperature estimate	395	381.47	374.63	380.59	387.31	389.98	401.19	410.94	420	428.52	433.69	428.67	432.17	433.26	424.48	420.53	413.15	383.53	386.18
Emissions (ESTIMATED, NOx, Ref % O2, mg/Nm3 CO, Ref % O2, mg/Nm3	NOT FOR GUAR/ 51.2 31.2	51.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2	51.2 31.2
Aero Energy Fuel Numbe Fuel Bourd N, Walass Sulfur Content, %Mass Sulfur Content, %Mass Ethylene, % Ethylene, % Ethylene, % Butylene, % Butylene, % Butylene, % Butylene, % Butylene, % Butylene, % Butylene, % Carbon Dioxide, % Carbon Monoxide, % Netrogen, % Water Vapor, % Oxygen, % Water Vapor, % Hero, Mass Specific Gravity WMT, (ulmm3) Kabast Parameters	0 0.1 845-55 558 0 0.7 0.0 0.7 0 0.0 0.																		
Sp. Heat, kJ/(kg*°K) Exh Mol Wght, kg/kmol Exh. Flow, ACFM	1.142 28.341 583975.9	28.352 567649.7	1.135 28.355 557288.5	1.137 28.349 541852.1	1.14 28.343 521589	1.128 28.526 508546.8	1.133 28.519 481360.2	1.135 28.516 456637.6	1.138 28.513 434744.6	1.141 28.511 416263.2	1.144 28.509 403980.8	1.146 28.504 404928.2	1.15 28.5 400074.4	1.151 28.502 388105.8	1.146 28.515 367370.6	1.144 28.525 346493.9	1.14 28.539 324626.7	1.126 28.575 289762.5	1.129 28.575 276357.4
Exh. Flow, SCFM	234291.5	232041.9	229999	221766.3	211489.6	205440.3	191497.8	179289.8	168646	159676.1	153921.9	155295.7	152735.7	147955.5	141669.1	134317.9	127081.3	118108.9	112230.8
Generator Information Gen. Capacity, kW	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8	50812.8
LPC Inlet Flow Wet, kg/s LPC Inlet Flow Dry, kg/s	130.156 129.327		128.292 127.475	126.842 126.034	123.998 123.208	117.282 116.535	113.684 112.96	107.302 106.619	103.138 102.482	103.685 103.025	103.981 103.318	103.996 103.334	104.036 103.373	104.05 103.387	104.074 103.412	104.106 103.443	104.122 103.459	104.035 103.372	104.046 103.383
Generator Generator Name Coolant	BDAX 7-290ERJT Air																		
Run Control Level 1 Target Power Target Part Load, % Sprint ON/OFF	Shaft Horse Powe 100 On	95	90	% Load % 85 On C	80	75	70	% Load % 65 On C	60	55	50	% Load % 45 Dn C	40	35	30	25	20	6 Load % 15 Dn C	Load 10 n
NOx Control NOx Target NOx Level, mg/Nm3	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
Emissions (Estimated, N			51	51	51	51	51	51	31	51	51	51	51	51	51	51	51	51	51
NOx, Ref % O2, mg/Nm3 NOx (NO2), kg/h CO2, kg/h	51.2 12.38 23855.61	51.2 11.8	51.2 11.69 22231.93	51.2 11.27 21680.04	51.2 10.75 20824.82	51.2 10.09 19345.27	51.2 9.4 18405.99	51.2 9.17 17423.92	51.2 8.62 16509.85	51.2 8.16 15712.7	51.2 7.87 15268.03	51.2 8.25 15611.9	51.2 8.12 15533.4	51.2 7.86 14965.72	51.2 7.24 13798.74	51.2 6.6 12685.52	51.2 5.98 11522.29	51.2 4.84 9507.65	51.2 4.6 9024.45

Performance By: Project:	Version 1. Not Found Not Found	2.10 Built: 2 1 1	2017-07-	AL REPORT 17 22:35 UTC nance NOT F	OR GUAR		Date: Time: E FOR STUI	20/07/2017 00:56:09 DY ONLY												
Engine: Model: Options: Generator	LM6000 PF N/A BDAX 7-	LM600 PF N/A 290BDAX	P		F /A	PF N/A	LM6000 PF N/A BDAX 7-29	LM6000 PF N/A 0BDAX 7-29	LM6000 PF N/A 0 BDAX 7-29	LM6000 PF N/A 0BDAX 7-29	LM6000 PF N/A 00 BDAX 7-29	LM6000 PF N/A 0BDAX 7-29	LM6000 PF N/A 0BDAX 7-29	LM6000 PF N/A 0BDAX 7-29	PF N/A	LM6000 PF N/A BDAX 7-29	LM6000 PF N/A 0BDAX 7-2	LM6000 PF N/A 90BDAX 7-29	LM6000 PF N/A 90 BDAX 7-29	LM6000 PF N/A 00BDAX 7-290ERJT
Frequency,Hz Voltage,kV PF		50 11 0.8	50 11 0.8	50 11 0.8	50 11 0.8	50 11 0.8		50	D 50) 5 I 1	0 5 1 1	D 50 1 11	D 50 1 11) 50 11) 50 I 11	50) 5 I 1	i0 5 1 1	0 50 1 11	D 50 1 11
Case Ambient Conditions Dry Bulb Temp., °C Wet Bulb Temp., °C Relative Humidity, % Elevation a.s.l., m	10	60 0	101 15 10.82 60 0	102 15 10.82 60 0	103 15 10.82 60 0	104 15 10.82 60 0	10.82 60	5 1 2 10.8 0 6	5 1: 2 10.8: 0 6: 0 1	5 1 2 10.8 0 6	5 1 2 10.8 0 6 0	5 19 2 10.83 0 60 0 0	5 15 2 10.83 0 60 0 0	5 15 2 10.82 0 60	5 15 2 10.82 0 60 0 0	10.8 10.8	5 1 2 10.8 0 6	15 1 82 10.8 50 6 0	5 1: 2 10.8 60 61 0 0	5 15 2 10.82 0 60 0 0
Barometric Press., kPa Pressure Losses Inlet Press. Loss, mmH20 Exh. Press. Loss, mmH20 Volute Loss, mmH20	15	1.6	101.6 152.4 95.2	101.325 101.6 152.4 89.97	101.325 101.6 152.4 86.18	101.325 101.6 152.4 81.34	101.6	5 101. 1 152.	6 101. 4 152.	5 101. 4 152.	6 101. 4 152.	6 101.0 4 152.0	6 101.6 4 152.4	5 101.6 1 152.4	5 101.6 4 152.4	101.	5 101 4 152	.6 101. .4 152.	.6 101.0 .4 152.0	6 101.6 4 152.4
GTG Load, % Gen. Output, Gross, kW HR, kJ/(kW*h) Comp. Inlet Temp., °C	407		95 8689 8999 15	90 36653 9132 15	85 34617 9299 15	80 32581 9483 15	75 30544 9656	28500 9913	3 26472 3 10244	2 2443 1062	5 2239 5 1122	9 20363 0 11997	3 18327 7 12904	16290 13678	0 14254 3 14263	15825	8 1018 5 1752		5 6109 2 23947	4073 7 30587
Fuel Flow Fuel Number Fuel LHV, kJ/kg Heat Input, MW Fuel Flow, kg/h Vol. Fuel Flow, Nm3/hr Fuel Temp., °C	Diesel #2 Diesel #2 42: 10 847 N/A	0.7		iesel #2 Di 42798 93 7820.7	esel #2 42798 89.4 7521.3	Diesel #2 42798 85.8 7219.1	Diesel #2 Diesel #2 42798 81.9 6893 N/A	9 78. L 660 N/A	5 75. 3 6336. N/A	3 72. 1 6066. N/A	1 69. 3 5871. N/A	8 67.9 9 5707.3 N/A	9 65. 8 5525. N/A	7 61.9 7 5206.2 N/A	Diesel #2 8 42798 9 56.5 2 4750.3 N/A	53. 4517. N/A	7 49 6 4168 N/A	.6 43. .4 3652. N/A	.4 40.6	6 34.6 1 2910.6 N/A
NOx Control Exhaust Parameters	DLE	DLE	D	LE D	LE	DLE	DLE	DLE	DLE	DLE	DLE	DLE	DLE	DLE	DLE	DLE	DLE	DLE	DLE	DLE
Exhaust Temp., °C Exhaust Flow, kg/s Energy (Ref 0R), kW Energy (Ref T2), kW Stack exit exhaust temp	94i 58	3.1 536 593	156.86 120.3 91877 56663 94.79	456.44 117 89238 55012 394.37	455.71 114 86854 52984 393.64	466.12 107.6 83238 51116 404.05	475.42 101.6 79665 49344 413.35	96. 7664 4783	5 93 2 7392 8 4647	2 87. 1 7121 2 4510	5 86. 0 7077 8 4388	9 87.1 6 7124 6 4289	9 85.9 9 70439 9 41939	9 83.5 5 67835 5 40000	5 79.2 5 62963 0 37348	76.1 6143 3597	8 73 6 5811 7 3387	.3 68. 12 5246 79 3060	.9 66. 6 5087 4 2907	5 55.6 3 42944 4 26470
Emissions (ESTIMATED, NOx, Ref % O2, mg/Nm3 CO, Ref % O2, mg/Nm3	NOT FOR	GUARAN		174.2 31.2	174.2 31.2	174.2	174.2	2 174.	2 174.	3 174.	3 174.	3 174.:	3 174.3	3 174.3	3 174.3	174.	3 174	.2 174.	.2 174.:	2 174.1
Exhaust Parameters Sp. Heat, kJ/(kg*°K) Exh Mol Wght, kg/kmol Exh. Flow, ACFM Exh. Flow, SCFM	1.: 28.i 53621 21396	889 2 9.4 520	1.119 28.888 0968.6 0072.1	1.119 28.888 506132 203234.7	1.119 28.888 492757.3 198062.7	1.122 28.889 471619 186896.2	28.889 450876	28.88 433328.	9 28.8 6 417547.	9 28.8 1 40182	9 28.8 2 39953	9 28.89 6 402612.	1 28.892 1 397725.0	2 28.893 5 383482	1 28.889 2 356718.6	28.88 348042.	9 28.88 7 329581	88 28.88 .9 298671.	4 28.88 .6 289626.	4 28.881 2 244284.1
Generator Information Gen. Capacity, kW	5081	2.8 50	0812.8	50812.8	50812.8	50812.8	50812.8	3 50812.	8 50812.3	8 50812.	8 50812.	8 50812.	8 50812.4	8 50812.8	8 50812.8	50812.	8 50812	.8 50812.	.8 50812.5	8 50812.8
LPC Inlet Flow Wet, kg/s LPC Inlet Flow Dry, kg/s	122. 121		19.425 18.665	116.103 115.364	113.626 112.902	110.395 109.692	104.82 104.15													
Generator Generator Name Coolant	BDAX 7-29 Air	90EF																		
Run Control Level 1 Target Power Target Part Load, %		ie Pr% Load 100	95	90	85	80	% Load 75												% Load !0 1!	
GTG Load, % Gen. Output, Gross, kW HR, kJ/(kW*h)	407		95 8689 8999	90 36653 9132	85 34617 9299	80 32581 9483	75 30544 9656	2850	3 26472	2 2443	5 2239	9 20363	3 18327	16290) 14254	12218	3 1018		5 6109	9 4073
Emissions (Estimated, N NOx, Ref % O2, mg/Nm3 NOx (NO2), kg/h CO2, kg/h	17 37 2712	4.3 .68 5.2 260	174.2 35.95 047.99	174.2 34.53 25043.74	174.2 33.65 24435.58	174.2 32.53 23573.55	31.08 22500.58	3 29.8 3 21558.2	7 28.4 2 20685.6	7 27.3 7 19803.6	9 27.5 8 19990.3	3 28.4 4 20578.1	9 28.4 7 20444.0	5 26.74 4 19410.3	4 23.94 1 17284.49	23.2 16850.	4 21.3 9 15552.7	38 18.1 79 13131.6	2 17.4 7 12765.6	8 13 7 9524.92
Sox (SO2), kgh Fuel Composition, Mass Fuel Bound N, Watass Suffur Content, %Mass Hydrogen, % Ethytene, % Ethytene, % Butytene, % Butytene, % Butytene, % Butytene, % Butytene, % Butytene, % Retanee, % Hestanee, % Hestanee, % Hestanee, % Mittigenee, % Nittiggenee, % Water Vapor, % Oxygene, % Water Vapor, % Oxygenee, % Hydrogene, % Water Vapor, % Oxygenee, % Hydrogenee, % Hydrogenee, % Hydrogenee, % Hittiggenee, % Hittiggeneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	%	0 D.1	16.46	15.58	15.18	14.72	13.81	9 13.5	5 12.9	1 12.2	8 <u>12.5</u>	1 12.9(8 12.6	3 12.02	2 10.83	: 10.5	1 9.7	77 8.1	9 7.	<u>u 6</u>

APPENDIX G

Practitioner Capability Statement

As presented in Appendix 1 of Environment Protection Authority (2016) Ambient Air Quality Assessment, the following Capability Statement is respectfully offered.

Table G-1	Practitioner capability statement						
Section	Requirements	Reeves Plains Power Station Project					
Cover page	Project title	Reeves Plains Power Station Project					
	Proponent details	Arcadis Australia Pacific Pty Ltd., on behalf of Alinta					
		Energy (Reeves Plains) Pty Ltd					
	Location of the premises	Reeves Plains, South Australia					
Primary	Name of the practitioner/s	Gary Graham, Director, Northstar Air Quality					
consulting		Martin Doyle, Director, Northstar Air Quality					
organisation		Marie-Laure Nguyen, AQ Engineer, Northstar Air Quality					
	Company name	Northstar Air Quality Pty Ltd					
	ACN	609 741 728					
	Responsible person	Gary Graham					
	Qualifications of relevant staff	Gary Graham, BSc(hons), MSc					
		Martin Doyle, BSc(hons), PhD					
		Marie-Laure Nguyen, M.Physics					
	Experience and practitioner	Gary Graham, 24 years, CSci, CEnv, CAQP (CASANZ)					
	affiliation	Martin Doyle, 18 years, AAirQual (CASANZ)					
	Accreditation (NATA or equivalent)	Marie-Laure Nguyen, 11 years					
	Is the accreditation specific to	Not applicable					
	methods						
Subcontractors	(a) Monitoring practitioners	None required or used					
	(b) Analytical laboratories	None required or used					
	(c) Modelling practitioners	Northstar Air Quality Pty Ltd (details as stated above)					
Methods used	List of monitoring or analytical	No monitoring or analytical methods were required.					
	method(s) being used for which	The assessment uses the TAPM and AERMOD dispersion					
	practitioners have accreditation, or	models					
	dispersion models for which the						
	practitioners have demonstrated						
	experience						

 Table G-1
 Practitioner capability statement

To further assist with demonstrating that appropriate methods and practices have been adopted, the following key requirements have been addressed:

Table G-2	Air quality impact assessment requirements	
Reference	Requirement	Response
Section 1.3 Reports and submissions	The EPA has a continuing commitment to assess submissions as soon as possible, so this document sets out how best to present information in a Project. This includes methods, protocols, comparisons against relevant criteria, quality processes that should be used and the range of supporting information needed for reports. It is important that reports are based on these principles and signed off by qualified and experienced senior practitioners.	Reference should be made to the practitioner capability statement
Section 2 Risk-based air quality assessment	To demonstrate that no adverse effects will occur at ground level due to emissions from a proposed or existing facility, owners/operators or proponents of facilities should initially use appropriate conservative models to predict the maximum ground level concentrations (GLCs) of pollutants.	The methodology used for modelling is presented in Section 4.2. The modelling contains a high degree of conservatism, as outlined in Section 4.2 and discussed throughout the AQIA.
	Owners/operators or proponents are required to demonstrate that these maximum concentrations are less than the GLCs of pollutants specified in Schedule 2 or odour criteria in Schedule 3 of the Air EPP at sensitive receptor(s). The GLCs are levels of specific pollutants or odours, below which environmental risk can be considered to be acceptable.	Reference should be made to Section 6.2 which demonstrates that the predicted concentrations are below the GLCs specified in the Air EPP.
	GLCs adopted under the Air EPP may be based on public health or amenity or may relate to other environmental values, where applicable.	The pollutants assessed during construction and operation are discussed in Section 2.3. The criteria adopted are presented in Section 1.3
	It is expected that existing ambient background concentrations of pollutants are also included into the assessment process, so that total concentrations of specific pollutants are less than their respective GLC. Where applicable, these background concentrations can be based on data from the nearest EPA monitoring station, modelled background levels, baseline monitoring performed for the project or advice from the EPA given on a case-by-case basis.	The assumptions used to assess the contribution of background air quality is discussed in Section 3.3. The results presented in Section 6.2 account for the contribution of background air quality.
Section 3 Modelling	The first step in undertaking air quality modelling is to clearly define the objectives and expected outcomes. This can be done by addressing questions such as:	

 Table G-2
 Air quality impact assessment requirements

080560 northstar

Reference	Requirement	Response
	• What is the reason for the air quality modelling?	Reference should be made to
		Section 1.2
	What questions need to be answered by modelling	Reference should be made to
	work?	Section 1.2
	• What pollutants or environmental indicators need to be	Reference should be made to
	modelled in order to provide the information required?	Section 2.3
	• What data and information are already available and	Reference should be made to
	how can these help?	Section 4.2
	• What considerations need to be made about	Reference should be made to
	background concentrations of pollutants?	Section 3.3
	• What type of pollutant source/s need to be modelled?	Reference should be made to
		Section 4.2
	• What are the geographical features near the pollutant	Reference should be made to
	source/s?	Section 3.1
	• How is the modelled data best utilised and reported to	Reference should be made to
	describe the issues under investigation?	Section 6.2, and Section 7